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a b s t r a c t

A study of the diffraction efficiency of a spatial light modulator with a large dynamic phase range is

reported. We use a phase-only device that reaches 4p phase modulation depth for the wavelength of

454 nm. This allows operating phase-only diffractive optical elements in the second harmonic

diffraction order, instead of in the usual first diffraction order. This type of implementation shows

advantages in terms of resolution and diffraction efficiency. Experimental results are reported for

blazed diffractive gratings and diffractive lenses.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Diffractive optical elements (DOEs) play an important role in many
optical technologies [1]. Liquid crystal (LC) spatial light modulators
(SLMs) are useful devices for implementing a variety of programmable
DOE, mainly when they produce pure-phase modulation character-
istics [2]. Usually, a pure phase-only modulation with a phase
modulation range reaching 2p radians is desired. Initial works in this
field involved twisted nematic and parallel-aligned LC-SLMs [3,4]. The
goal of reaching faster optical responses led to a reduction of the
liquid crystal layer in modern devices. This motivated the use of
elliptical polarization configurations to achieve a phase-only regime
[5], but it reduced the overall phase modulation range. In some
devices, the available phase dynamic range is actually shorter than 2p
radians in standard configurations. Strategies have been demonstrated
either to optimally encode a phase-DOE onto a limited phase
modulation device [6], or to enlarge the phase modulation range by
unconventional polarization configuration, this phase improvement
requiring a reduction of the average intensity transmission [7].

Modern LC on Silicon (LCoS) modulators work in reflection, thus
providing larger values of the phase modulation range. In addition,
some LCoS devices like parallel-aligned nematic (PAL), or vertically
aligned nematic (VAN) act as electrically controlled birefringence
(ECB) displays, i.e., programmable linear wave-plates. Phase-only
modulation is therefore obtained in these devices simply by orienting
the input linear polarization parallel to the LC director axis. Therefore,

phase-only LC devices with phase modulation range larger than 2p
are nowadays commercially available.

In this paper, we examine the diffraction properties of two-
dimensional DOEs displayed in a parallel-aligned LCoS display with
a dynamic phase range reaching 4p radians. This doubled phase
depth, compared to standard 2p phase modulation, allows operating
DOEs in the second harmonic diffraction order. It is shown that this
operation presents advantages in terms of spatial resolution. For
example, it permits reducing the diffraction efficiency loss induced
when the displayed DOE presents high spatial frequency compo-
nents, near the resolution limit of the device [8,9].

The paper is organized as follows. First, in the next section we
examine the theory for the blazed grating with different phase
modulation depth, in particular when the phase range exceeds
the usual 2p range. Then, in Section 3 we present experimental
results obtained with a phase-only LCoS display, capable of
reaching 4p phase modulation for an operating wavelength of
454 nm. We show how the blazed grating can be operated in the
second harmonic component. Then, the approach is extended to
other diffractive elements, in particular to a diffractive lens. We
show that operating in this second harmonic component
improves the diffraction efficiency of the displayed lens. Finally,
the last section presents the conclusion of the work.

2. Blazed grating with variable phase depth

Let us first analyze a one dimensional blazed phase diffraction
grating. It can be expressed as a linear phase dependence
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where � denotes the convolution operation; the comb( � ) func-
tion is defined as
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being p the period of the grating, and
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denotes the function defining a single period of the grating
(sometimes it is referred to as the slit function [10,11]).
The rect(x) function is defined as 1 if 9x9o1, and zero elsewhere.
The blazed grating phase profile is sketched in Fig. 1(a). The
parameter M in Eq. (3) controls the phase dynamic range of the
blaze grating. The phase ramp has a maximum variation
Fmax¼2pM; the standard blazed grating (Fmax¼2p) is obtained
for M¼1.

The intensity of the Fourier transform of Eq. (1) is given by

IðuÞ ¼ 9G0ðuÞ9
2 1

p2
comb ðupÞ, ð4Þ

where G0(u) is the Fourier transform of g0(x), u denoting the
spatial frequency coordinate. Considering the slit function in
Eq. (3), its Fourier transform squared modulus can be expressed
as:

9G0ðuÞ9
2
¼ p2sinc2ðpðu�Mu1ÞÞ, ð5Þ

where u1¼1/p is the fundamental frequency of the grating (first
harmonic order). The sinc function is defined as sinc(x)¼sin(px)/(px).
The relative intensity In of each diffraction order is given by the
function I(u) evaluated at the harmonic frequencies un¼nu1,
n¼0,71,72y. In this case, for an arbitrary value of M, they

are given by:

In ¼ sinc2ðn�MÞ ð6Þ

In order to intuitively understand the phenomena, Fig. 1(b)
shows a profile of the functions comb(up), sinc2(p(u�Mu1) and
I(u), for a value M¼1.5. Note that the comb function gives the
position of the diffracted orders at locations un¼nu1. The squared
sinc function is an envelope function that modulates the relative
intensity of the diffraction orders. The position of this envelope
function is controlled by the M parameter, being the maximum
located at the spatial frequency u¼Mu1. For instance, for M¼1
(Fmax¼2p) and for M¼2 (Fmax¼4p), the maximum of this envel-
ope function is centered at the first (u1) and at the second (u2¼2u1)
harmonic orders, respectively. And the zeros of the sinc function
exactly coincide with the rest of harmonic frequencies un. Thus, the
light is fully diffracted either onto the first (n¼1) or onto the second
(n¼2) diffraction order in each case.

Values of M lower than one lead to a diffraction pattern where
the most intense orders are n¼0 and n¼1. For instance, for
M¼0.5, I0¼ I1¼40.5%. This situation (Mo1) has been analyzed in
SLM devices showing a limited phase modulation range, less than
2p radians [6]. The spatial variation of this M parameter has been
a very useful technique to encode amplitude information onto a
phase only function [12], however, always limited to the range
(0,1). Here, on the contrary, we consider extending the typical
(0,1) range to values 1oMo2, where the envelope function is
centered between the first and the second harmonic orders, thus
being both of them the most intense ones. For instance, for
M¼1.5, I1¼ I2¼40.5%. Next, we present experimental verification
of this Fourier theory.

3. Experimental results with a large phase modulation LCoS
display

We have experimentally generated such blazed gratings with a
parallel-aligned Hammamatsu LCoS-SLM (X10468 series), with
792�600 pixels of size 20�20 mm2. The rise and fall response
times at a wavelength of 633 nm are 10 ms and 35 ms, respec-
tively, which can be assumed similar for the device recommended
range of operation (from 400 nm to 700 nm). The polarization of
the input beam was selected as linearly polarized along the liquid
crystal director axis, in order to obtain a phase-only modulation
output. In that configuration, this LCoS-SLM provides a modula-
tion depth range from around 2.3p at 700 nm to 6.4p. We
measured the phase modulation range versus the addressed grey
level at typical wavelengths using a calibration method based on
displaying a two-level grating on the LCoS and measuring the
intensity of the zero and first diffraction orders [13]. For the
operating wavelengths l¼633 nm (He–Ne laser), l¼514 nm and
l¼454 nm of a tunable Ar ion laser, we obtained 2.4p rad,
3.2p rad and 4p rad phase modulation range, respectively. The
latter has been used in this work to illuminate the SLM display.
From the measured values, fitting models can be used to predict
phase changes at other wavelengths in the range [14]. Once the
device was calibrated, blazed gratings with different M parameter
were displayed on the SLM, by addressing adjusted gray level
images via PC. The corresponding diffraction patterns were captured
with a CCD camera, (Basler, scA1390-17fc, with 1392�1040 pixels).

Fig. 2 shows the experimental result with a grating with period
p¼64 pixels, where we progressively increase the phase depth to
have values Fmax¼0, p, 2p, 3p and 4p, respectively (steps of
0.5 in the M parameter). The experiments are performed in equal
conditions and show agreement with Eq. (6). We calculated, in
each case, the diffraction efficiency Zk as the intensity of the kth
diffracted order respect to the incident light on the SLM.
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Fig. 1. (a) Phase profile j(x) of the blazed grating. Parameter M controls the phase

dynamic range and (b) different functions involved in the generated Fourier pattern.
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