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h i g h l i g h t s

• We proposed a bias reduced long run variance estimator for testing.
• We use an almost unbiased autocovariance estimator.
• The t-statistics for the mean in a simple location model perform well.
• Simulations demonstrate promising empirical performance and suggests further theoretical analysis.
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a b s t r a c t

This paper proposes a bias reduced long run variance (LRV) estimator of a univariate time series with
unknown mean that addresses well known finite sample bias problems. The LRV estimator is based on
the (almost) exactly unbiased autocovariance estimator proposed byVogelsang andYang (2016).Whereas
using fixed-b critical values is known to correct downward bias in LRV estimates generated by demeaning
the data, the approach we take also corrects the classic Parzen bias that is not captured by the fixed-b
approach. When applied to the tests of the null hypothesis of the mean in a simple location model, a
simulation study shows that the proposed LRV estimator leads to tests with less over-rejections while
maintaining power at least as high and often higher as the standard robust t test based on fixed-b critical
values. These simulations suggest further theoretical analysis of the bias reduction approach iswarranted.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The long run variance (LRV) of a covariance stationary time
series is widely used in constructing test statistics for inference
robust to serial correlation. Here we focus on the widely used
LRV estimators based on nonparametric heteroskedasticity and
autocorrelation consistent (HAC) kernel estimators as analyzed
in the seminal work by Newey and West (1987) and Andrews
(1991). Because kernel HAC estimators are constructed using linear
combination of estimated autocovariances, well known biases in
sample autocovariances contribute to biases in LRV estimators.
Vogelsang and Yang (2016, VY16 hereafter) recently proposed an
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(almost) unbiased autocovariance estimator based on the obser-
vation that the expectation of the sample autocovariances can
be written as a linear transformation of the vector of population
autocovariances that involves a matrix with only deterministic
entries, labeled as A. If the inverse linear transformation exists, an
unbiased estimator of the population autocovariances is obtained
by inverting the linear transformation. While VY16 find that the A
matrix is singular, they show that an invertible transformation is
obtained if at least one high lag autocovariance is neglected. This
leads to autocovariance estimators that are unbiased for moving
average processes and approximately unbiased for autoregressive
processes. Using autocovariance estimates based on the A-matrix
approach, we develop a bias reduced LRV estimator that we use to
construct heteroskedasticity autocorrelation robust (HAR) fixed-
b tests regarding the mean in a simple location model. The bias
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improvement has noticeable positive impacts on inference and
leads to t-testswith higher power and less over-rejection problems
at the same time. We also examine bias reduction methods in LRV
estimation based on the approach inOkui (2010).We show that the
approach of Okui (2010) is equivalent to scaling out the demeaning
bias implied by fixed-b theory. When used in conjunction with
fixed-b critical values, the Okui (2010) approach leads to tests that
are equivalent to using the usual kernel LRV estimator. Note that
the use of fixed-b critical values is becoming standard practice
given that fixed-b critical values are known to reduce size distor-
tions. See, among others, Kiefer et al. (2000), Kiefer and Vogelsang
(2002, 2005), Sun et al. (2008), Sun and Kaplan (2011), and Müller
(2014).

Using a simulation study we compare the performance of the
new tests with standard tests based on kernel LRV estimators
and fixed-b critical values. The new approach leads to tests with
less over-rejections while maintaining power at least as high and
often higher as the standard robust t-test based on fixed-b critical
values. These simulations suggest further theoretical analysis of
the bias reduction approach iswarrantedwhichwe leave for future
research.

The remainder of this paper is organized as follows. Section 2
presents the simple location model and defines the standard LRV
estimator, the bias-corrected LRV estimator proposed by Okui
(2010), and theA-Matrix LRV estimator. HAR inference is discussed
in Section 3. Section 4 gives representative results from a simula-
tion study that compares empirical null rejections and power of
the standard t-statistic and its A-matrix version. Some technical
details are given in an Appendix.

2. Model and statistics

Consider a covariance stationary univariate time series given by

yt = µ + ut , t = 1, 2, . . . , T , (1)
E(ut ) = 0,

γj = E(utut−j), j = 0, 1, 2, . . .

The LRV of ut , which we denote by σ 2, is given by

σ 2
= γ0 + 2

∞∑
j=1

γj.

The OLS estimator of µ is

µ̂ = y = T−1
T∑

t=1

yt ,

and the OLS residuals are given by

ût = yt − y = ut − u.

The standard estimator of γj is given by

γ̂j = T−1
T∑

t=j+1

ût ût−j.

Another well known estimator is

γ̂ ∗

j =
1

T − j

T∑
t=j+1

ût ût−j,

which is unbiased only if µ is known.
For simplicity and ease of exposition, we focus on the LRV

estimator using the Bartlett kernel,

σ̂ 2(S) = γ̂0 + 2
S−1∑
j=1

(1 −
j
S
)γ̂j,

where S is the bandwidth or truncation lag.

2.1. Reduced bias LRV estimator

VY16 defines a linear transformation, labeled as the A-matrix
approach, based on the mapping between the expectation of the
sample autocovariances and the population autocovariances as
follows

E(γ̂ ) = Aγ ,

where γ̂
.
= [γ̂0 γ̂1 · · · γ̂T−1]

′, A .
= [a0 a1 · · · aT−1]

′, E(γ̂j) = a′

jγ ,
and γ

.
= [γ0 γ1 · · · γT−1]

′. Note that each aj is a vector of known
numbers.

When the population autocovariances of high lags (≥M) are
zero (small), exactly (nearly) unbiased estimators of the remaining
autocovariances can be obtained using the inverse of upper blocks
of the Amatrix:

γ̃ (M)
=

(
A(M,M))−1

γ̂ (M),

whereM is the A-matrix truncation parameter, A(M,M) is the upper
leftM ×M block of A, and γ̂ (M) is anM × 1 column vector with el-
ements γ̂0, γ̂1, . . . , γ̂M−1. γ̃ (M) .

= [γ̃
(M)
0 γ̃

(M)
1 · · · γ̃

(M)
M−1]

′ and γ̃ (M) is
theA-matrix unbiased estimator of γ̂ (M). The detailed presentation
and calculation of A(M,M) can be found in VY16.

We can use the A-matrix autocovariance estimators γ̃ (M) to
construct a bias reduced kernel LRV estimator as

σ̃ 2
M (S) = γ̃

(M)
0 + 2

S−1∑
j=1

(1 −
j
S
)γ̃ (M)

j ,

as long as S ≤ M . Because the A-matrix truncation parameter,
M , treats higher order autocovariances as approximately zero, it is
natural to equate, S, the bandwidth/truncation parameter of σ̃ 2

M (S)
with M leading to the Bartlett LRV estimator

σ̃ 2
S (S) = γ̃

(S)
0 + 2

S−1∑
j=1

(1 −
j
S
)γ̃ (S)

j .

γ̃ (bT ) leads to an approximately unbiased LRV estimator for a
wide range of b values. In unreported simulations we found this
to be true for other kernels including the rectangular kernel. The
unbiasedness of γ̃ (bT )

j at almost every lag length j helps reduce the
bias in the LRV estimator generated by downweighting from the
kernel.

2.2. The LRV estimator of Okui (2010)

Okui (2010) proposed an approximately unbiased autocovari-
ance estimator and used that estimator to propose a kernel LRV
estimator. Applying an iterative method Okui (2010) obtained the
estimator

σ̂ ∗2(S) =

(
1 +

ι′TKT

T − ι′TKT

)
σ̂ 2(S)

where ιT is a T × 1 column vectors of ones and in the case of the
Bartlett kernel

KT
.
=

(
1, 2(1 −

1
T
)(1 −

1
S
), 2(1 −

2
T
)(1 −

2
S
),

. . . , 2(1 −
S − 1
T

)(1 −
S − 1
S

), 0, . . . , 0
)′

.

Obviously σ̂ ∗2(S) is a scaled version of σ̂ 2(S) andwe show in the
Appendix that the scaling factor is asymptotically equivalent to a
multiplicative bias adjustment implied by fixed-b theory. Because
the scaling constant does not depend on data, the use of σ̂ 2(S) and
σ̂ ∗2(S) to construct test statistics leads to equivalent tests when
fixed-b critical values are used. Therefore,we only need to compare
tests based on σ̂ 2(S) with tests based on σ̃ 2

S (S).
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