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• A Bayesian alternative to Zhuo (2018) is presented.
• The method is general as it presents an explicit formula for the local sensitivity of marginal likelihood.
• Similar expressions for posterior moments and other functions of interest, including inefficiency.
• Methods for examining prior sensitivity in a straightforward way are also presented.
• The methods are illustrated in the context of a stochastic production frontier.
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a b s t r a c t

A Bayesian alternative to Zhuo (2018) is presented. The method is of general interest as it presents an
explicit formula for the local sensitivity of log marginal likelihood when observations vary by a small
amount. The remarkable feature is that the formula is very easy to compute and does not require knowl-
edge of the marginal likelihood which is, invariably, extremely difficult to compute. Similar expressions
are derived for posterior moments and other functions of interest, including inefficiency. Methods for
examining prior sensitivity in a straightforward way are also presented. The methods are illustrated in
the context of a stochastic production frontier.

© 2018 Published by Elsevier B.V.

1. Introduction

In a recent paper, Zhuo (2018) examined local influence in the
context of a stochastic frontier model with normal–half-normal
errors. His approach is based on the geometric normal curvature
of likelihood displacement. Unfortunately, Zhuo’s (2018), cannot
be extended easily to examine local sensitivity of certain functions
of the parameters or technical inefficiency estimates. In this paper,
we derive new results relating to local sensitivity of marginal
likelihood and posterior moments and we apply them in the same
context, viz. a stochastic frontier model. However, most results are
more generally applicable to Bayesian analysis.

* Correspondence to: Lancaster University Management School, LA1 4YX, UK.
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Suppose xi ∈ ℜ
k is a vector of explanatory variables, β ∈ ℜ

k is
a vector of parameters and the model is:

yi = x′

iβ + vi − ui, i = 1, . . . , n, (1)

where

vi ∼ N (0, σ 2
v ), ui ∼ N+(0, σ 2

u ), i = 1, . . . , n. (2)

The two error components are independent and independent
from the regressors. The parameter vector is θ = [β ′, σv, σu]

′. The
likelihood function of the model is given by:

L (θ; Y ) =

(
2
σ

)n n∏
i=1

ϕ

(εi

σ

) n∏
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Φ

(
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)
, (3)

where εi = yi − x′

iβ , σ
2

= σ 2
v + σ 2

u , λ =
σu
σv

and Y = {y, . . . , yn}.
Moreover, ϕ(z) = (2π )−1/2e−z2/2 and Φ(z) =

∫ z
−∞

ϕ(t)dt . Given a
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prior p(θ ) the posterior is given by Bayes’ theorem:

p(θ |Y ) ∝ L (θ; Y )p(θ ). (4)

2. Bayesian local sensitivity

The central object of interest in Bayesian analysis is posterior
moments. For example, the vector of posterior means is

m(Y ) =

∫
θp(θ |Y )dθ. (5)

For model comparison themarginal likelihood is also of consid-
erable interest:

M (Y ) =

∫
L (θ; Y )p(θ )dθ. (6)

The marginal likelihood is very difficult to obtain and often
expensive numerical approximations are used (Gelman andMeng,
1998; Han and Carlin, 2001; Kass and Raftery, 1995). Of course, it
is simply the integrating constant of the posterior density in (4). It
turns out thatwe can examine the local sensitivity ofmarginal like-
lihood without even having to compute it. Indeed, the expression
for local sensitivity can be derived as follows:

∂M (Y )
∂yi

=

∫
∂L (θ; Y )

∂yi
p(θ )dθ =

∫
∂ lnL (θ; Y )

∂yi
L (θ; Y )p(θ )dθ

=
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∂ lnL (θ; Y )

∂yi

L (θ; Y )p(θ )
M(Y )

M(Y )dθ,

from which we obtain:
∂ lnM (Y )

∂yi
=

∫
∂ lnL (θ; Y )

∂yi
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dθ

=

∫
∂ lnL (θ; Y )

∂yi
p(θ |Y )dθ

= Eθ |Y

{
∂ lnL (θ; Y )

∂yi

}
, i = 1, . . . , n. (7)

Therefore, the local sensitivity of marginal likelihood to any
given observation is a posterior expectation of the derivative of the
log likelihood with respect to the observation. This derivative is
very often available analytically, and the posterior expectation can
be approximated accurately provided aMarkov ChainMonte Carlo
sample

{
θ (s), s = 1, . . . , S

}
is available:

∂ lnM (Y )
∂yi

≃ S−1
S∑

s=1

∂ lnL (θ (s)
; Y )

∂yi
. (8)

Let us take now the case of local sensitivity of posterior mo-
ments or any function of the parameters, say f (θ ). The posterior
expectation, EθY f (θ ) is:

m(Y ) =

∫
f (θ )p(θ |Y )dθ =

∫
f (θ )

L (θ; Y )p(θ )
M (Y )

dθ. (9)

Taking derivatives, we have the final expression:

∂m(Y )
∂yi

= Eθ |Y f (θ )
{

∂ lnL (θ; Y )
∂yi

−
∂ lnM (Y )

∂yi

}
. (10)

In this expression, ∂ lnM(Y )
∂yi

has been computed in (7), and
∂ lnL (θ;Y )

∂yi
are also available from the intermediate computations

in (7).
It should be mentioned that Zhu and Ibrahim (2011) propose

techniques organized around the perturbation manifold and use
differential geometry to examine simultaneously changes in the
data, the prior and the model. Changes in the prior, for example,
are modelled using the ϵ-contamination class (Berger, 1990). One

Fig. 1. Local sensitivity of log marginal likelihood.

disadvantage of their approach is that they need MCMC samples
from both the baseline and the perturbed model and some care
must be exercised when choosing the types of perturbation to the
data and/or the prior. In addition, some analytical work is needed
to obtain tangent vectors of the perturbation parameterswhich are
closely associated to Fisher information. For complicated models
it seems that the approach in Zhu and Ibrahim (2011) requires
both analytical work as well as intensive MCMC which we avoid
in our approach. It seems that the types of perturbations they
consider, can be examined in the present framework using the
techniques we have proposed without additional MCMC: the only
requirement is that MCMC samples are available from the baseline
model.

3. Application to the stochastic frontier model

From the log of the likelihood of the frontier model in (3) we
can obtain the derivatives:
∂ lnL (θ; Y )

∂yi
= −

εi

σ 2 −
λ

σ

ϕ(−λεi/σ )
Φ(−λεi/σ )

, i = 1, . . . , n. (11)

To illustrate the concepts, we generate n = 101 observations
from a frontier model with an intercept and two regressors (gen-
erated from standard normal distributions), σv = 0.1, σv = 0.5,
β1 = −2 and the remaining coefficients set to 0.5. Our prior is:

p(β, σv, σu) ∝ σ−1
v e−0.01/(2σ2

v )σ−1
u e−0.01/(2σ2

u ). (12)

The prior for β is flat. For σv and σu the priors are improper,
uninformative relative to the likelihood and take into account the
analysis in Fernandez et al. (1997) so that the posterior is proper.

WeperformMCMCanalysis using aMetropolis algorithm1 with
60,000 passes the first 10,000 are discarded to mitigate possible
start up effects.2

Local sensitivity of log marginal likelihood is presented in
Fig. 1. Local sensitivity of posterior means of the parameters are
presented in Fig. 2. Marginal likelihood is, generally, sensitive to
omitting observations and particularly observation 64 resulting in
a drop of 20 units in log marginal likelihood which is considerable.

1 The Metropolis algorithm is an independence chain whose proposal distribu-
tions are uniform for each parameter. The range of the uniform distribution is
adjusted during the burn-in phase so that approximately 25% of all candidates are
accepted.
2 Gauss programs are available on request.
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