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h i g h l i g h t s

• The correlation in an RBP does not capture the correlation of the endogenous variables.
• No extra arguments are needed if an RBP and BP deliver correlations of opposite sign.
• A zero-correlation parameter in a BP may mask the presence of a recursive system.
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a b s t r a c t

This note shows that, if a Bivariate Probit (BP) model is estimated on data arising from a Recursive
Bivariate Probit (RBP) process, the resulting BP correlation parameter is a weighted average of the RBP
correlation parameter and the parameter associated to the endogenous binary variable. Two corollaries
follow this proposition: i) the interpretation of the correlation parameter in the RBP is not the same as in
the BP —i.e. the RBP correlation parameter does not necessarily reflect the correlation between the binary
variables under study; and ii) a zero correlation parameter in a BP model, usually interpreted as evidence
of independence between the binary variables under study, may actually mask the presence of an RBP
process.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In modelling two jointly determined binary choices, empirical
researchers usually resort to either a Bivariate Probit (BP) or a
Recursive Bivariate Probit (RBP). The BP is a system of two seem-
ingly unrelated probit equations in which the correlation between
the binary variables under analysis is captured by the conditional
tetrachoric correlation of the error terms (Greene, 2018). The RBP
is a system of two probit equations that allows the errors terms to
be correlated, and the binary dependent choice in one equation to
be an endogenous regressor in the other equation.

In this paper, assuming that a BP model is estimated on data
truly arising from a RBP process, we show that the resulting BP
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correlation parameter is a weighted average of the RBP correlation
parameter and the parameter associated to the endogenous binary
variable in the RBP. We discuss two implications of this result.

First, the interpretation of the RBP correlation parameter does
not follow the interpretation of the BP correlation parameter. That
is, the RBP correlation parameter does not necessarily capture the
correlation between the binary variables under analysis — i.e. once
the effect of the endogenous variable is taken into account, the
correlation between the errors terms is not necessarily of the same
sign as the endogenous relationship. We have identified some
confusion on this point in empirical applications — with cases in
which researchers have used behavioural arguments when an RBP
delivers a correlation parameter with the opposite sign to the one
yielded by a BP model (e.g., Kassouf and Hoffmann, 2006; Gitto et
al., 2006).

Second, a zero or close to zero BP correlation parameter, usually
interpreted as evidence that the binary variables can be modelled
as independent of each other (e.g., Humphreys et al., 2014), may
not always imply independence of the binary variables under
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analysis. In particular, a zero or close to zero correlation parameter
may result from erroneously estimating a BP model on RBP data.

We present our result, and illustrate its two implications
through a series of Monte Carlo simulations and an empirical
application.

2. Correlation parameter in a BP when the data follow a RBP
process

Consider a true data-generating process that follows the Bi-
variate Probit with the recursive structure proposed by Maddala
(1986):

y∗

1i = β′

1x1i + υ1i, y1i = 1 if y∗

1i > 0, y1i = 0 otherwise, (1)
y∗

2i = δy1i + β′

2x2i + υ2i,

y2i = 1 if y∗

2i > 0, y2i = 0 otherwise, (2)

[υ1i, υ2i] ∼ Φ2[(0, 0), (1, 1), ζ ], ζ ∈ [−1, 1]

where i is the individual index; y∗

1i and y∗

2i are latent continuous
variables for which only the binary variables y1i and y2i are observ-
able; x1i and x2i are vectors of exogenous variables1 ; and (υ1i, υ2i)′
is a vector of error terms described by Φ2 — a bivariate standard
normal distribution with correlation ζ .2

Assume now that an empirical researcher estimates a Bivariate
Probit that misses the recursive structure of Eqs. (1) and (2); i.e.

y∗

1i = β′

1x1i + υ1i, y1i = 1 if y∗

1i > 0, y1i = 0 otherwise, (3)
y∗

2i = β′

2x2i + ε2i, y2i = 1 if y∗

2i > 0, y2i = 0 otherwise, (4)

[υ1i, ε2i] ∼ Φ2[(0, 0), (1, 1), ρ], ρ ∈ [−1, 1]

where ρ is the correlation between υ1i and ε2i.
If the BP defined by Eqs. (3) and (4) is estimated on the data

generated by Eqs. (1) and (2), then the true recursive component
is absorbed by the error term of Eq. (4) which implies that ρ is
mechanically determined by ζ and δ; i.e.,

ρ ≡ corr(υ1i, ε2i) = corr(υ1i, δy1i + υ2i)

=
cov(υ1i, δy1i + υ2i)

√
var(υ1i)var(δy1i + υ2i)

=
cov(υ1i, δy1i) + cov(υ1i, υ2i)

√
var(δy1i) + var(υ2i) + 2cov(δy1i, υ2i)

=
δcov(υ1i, y1i) + ζ√

δ2var(y1i) + 2δcov(y1i, υ2i) + 1
. (5)

Not surprisingly, according to Eq. (5) if δ = 0 thenρ = ζ — i.e. in
the absence of a recursive structure, the RBP collapses to the BP.
Also, Eq. (5) shows that ρ can plausibly take value zero, depending
on the signs and relative magnitude of ζ and δ — i.e. a BP model
estimated on RBP data can potentially deliver a zero correlation
parameter which would erroneously be interpreted as evidence of
independence between y1 and y2. Implicit in the previous state-
ment (and in the setting of the RBP process), no restrictions are
imposed on the signs of ζ and δ. For instance, ζ and δ may have
opposite signs. While ζ captures the correlation between the error

1 We have assumed that there is exogenous variation in both x1i and x2i , and that
there is at least one exclusion. The model described by Eqs. (1) and (2) is generally
identified even if x1i = x2i = xi , granted enough variation is provided by the
exogenous covariates in the model. In the narrow case in which x1i = x2i = a
dummy variable, the absence of an exclusion restriction may result in failure of
identification. A detailed discussion of this case and on identification in the RBP
model more generally may be found in Wilde (2000), Mourifié and Méango (2014)
and Han and Vytlacil (2017). Further discussion on identification goes beyond the
scope of this paper.
2 A recursive structure is logically consistent with, for instance, the health pro-

ductionmodel in which individuals first engage in a healthy behaviour (y∗

1) in order
to produce health (y∗

2) (see Humphreys et al., 2014).

terms υ1 and υ2, it does not reflect the correlation between y1
and y2. Such correlation is subsumed into δ — which implies that
the interpretation of the RBP correlation does not resemble the
interpretation of the BP correlation parameter. Section 3 illustrates
the implications from Eq. (5).

3. Illustration

The Monte Carlo simulations in this section are designed to
illustrate how the sign of ρ̂ depends on the signs and values of both
ζ and δ— i.e.we illustrate thatρ might be estimated at zero or close
to zero even if ζ is not zero.

Also, we borrow data from Blasch et al. (2017) to illustrate
that, in empirical applications, ζ does not necessarily reflect the
direction of the correlation between y1 and y2.

3.1. Monte Carlo simulations

Apseudo-population of 100,000 individuals has been simulated
according to the following recursive data-generating process:

y∗

1i = −2.00 + 0.10z1i + 0.90z2i + υ1i,

y1i = 1 if y∗

1i > 0, y1i = 0 otherwise, (6)
y∗

2i = δy1i − 1.00 + 1.20z1i − 0.20z2i + υ2i,

y2i = 1 if y∗

2i > 0, y2i = 0 otherwise, (7)

where z1 and z2 are two exogenous variables. Realizations of z1 are
drawn from a binomial distribution with probability of success of
0.5; and realizations of z2 are drawn from a normal distribution
with mean 2 and unitary standard deviation.

Results reported in Table 1 illustrate the values of ρ̂ that arise
from erroneously estimating a BP on RBP data generated according
to Eqs. (6) and (7). Each set of results in Table 1 arise from 1000
Monte Carlo replications.

The first panel of Table 1 illustrates that when no correlation
between unobservables is present in the true RBP process (ζ = 0),3

then the correlation parameter in a BP model takes value zero
when the parameter associated to the endogenous variable takes
value zero — i.e. the sign and magnitude of ρ̂ is determined by the
sign and magnitude of δ. In the six scenarios of the first panel, ζ is
assumed to be zero; from left to right δ takes values 2.00, 1.50, 0.40,
0.00,−1.50, and−2.00, respectively. Consistently with Eq. (5), ρ̂ is
positive when δ is positive; zero when δ = 0; and negative when
δ is negative. We also report ζ̂ and δ̂ to document that the correct
RBP model yields estimates that reflect the true parameters.

The second panel of Table 1 illustrates that when ζ is large and
positive (e.g., ζ = 0.80), then ρ̂ is large and positive when δ is
also positive. However, ρ̂ can take a value close to zero and even
shift its sign if δ is negative and relatively large — in this scenario,
δ ≈ −1.50 provokes the shift in sign. In the six scenarios of the
second panel, ζ = 0.80, and δ goes from 2.00 to −2.00 in a similar
fashion as in the previous panel of results. Notice that ρ̂ = 0.99
when δ = 2.00, and ρ̂ = 0.90 even when δ = 0.40. A δ near
−1.50 is needed to shift the sign of ρ̂ — i.e. under this scenario, δ
is required to be negative and large for a shift in sign to occur.

Following a similar reasoning as in the second panel, the third
panel of Table 1 illustrates that a large and negative correlation
between unobservables in the RBP process (e.g., ζ = −0.80)
translates into a large and negative ρ̂ unless δ is large and positive.

3 This scenario is not unseen in empirical applications. For instance, Greene
(1998)’s RBP yields a zero correlation parameter.
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