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h i g h l i g h t s

• Methods for targeting limited resources to high-risk subpopulations are studied.
• An RCT is considered for measuring the difference in efficiency between methods.
• The RCT is shown to suffer from a form of randomization bias.
• A survey-based design is shown to be unbiased.
• An application to targeting lead hazard investigations is presented.
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a b s t r a c t

This paper studies the evaluation ofmethods for targeting the allocation of limited resources to a high-risk
subpopulation.We consider a randomized controlled trial tomeasure the difference in efficiency between
two targeting methods and show that it is biased. An alternative, survey-based design is shown to be
unbiased. Both designs are simulated for the evaluation of a policy to target lead hazard investigations
using a predictive model. Based on our findings, we advised the Chicago Department of Public Health to
use the survey design for their field trial. Our work anticipates further developments in economics that
will be important as predictive modeling becomes an increasingly common policy tool.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Policymakers may choose to target the allocation of scarce
resources to a subpopulation according to risk or need. Rapid ad-
vances in predictivemodeling in recent decades have the potential
to make significant contributions to this age-old economic prob-
lem (Kleinberg et al., 2015). Someof the programswhere predictive
targeting is employed or has been proposed include: residential
lead hazard investigations (Potash et al., 2015), restaurant hygiene
inspections (Kang et al., 2013), and violence education (Chandler
et al., 2011).

Of course, the impact of any targeting method should be eval-
uated. However, as we shall see, care must be taken in apply-
ing the existing economic field trial framework when different
treatments (targetingmethods) operate on different subsets of the
population. We develop a framework for this analysis by drawing
on the machine learning (Baeza-Yates et al., 1999) and targeted
therapies (Mandrekar and Sargent, 2009) literatures.

Concretely, suppose we have a population of units (e.g. homes)
X = {1, . . . ,N} and the resources to perform k observations
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(e.g. investigations) of some binary outcome y (e.g. lead hazards).1
Next suppose we have a targeting method S which selects a subset
Sk of k units for observation.

We define the precision of S at k to be the proportion of positive
outcomes among the targets Sk. When the goal of targeting is to
observe positive outcomes, precision is a measure of efficiency
(e.g. the proportion of home investigations finding lead hazards).

In this paper our task is to compare the precision at k of two
different targetingmethods S and T using k observations. Denoting
the precisions of S and T by µSk and µTk , respectively, we wish to
measure their difference

δ := µSk − µTk . (1.1)

When δ is positive, S is more efficient than T as a targetingmethod.
With k observations we can measure the precision of S or of T .

But we would need up to2 2k observations to measure them both
and so measure δ. Thus we estimate δ statistically.

A natural design for a field trial to estimate δ is an RCT in which
the population is randomly split in half and each targeting method

1 We consider interventions in Section 4. Continuous outcomes may be accom-
modated but binary outcomes are more common.
2 Depending on the size of the intersection Sk ∩ Tk .
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(a) RCT. (b) Survey.

Fig. 1. In the RCT (a), the population is randomly split in halves X ′, X ′′ and each targeting method is applied to one half. In the survey (b), the targeting methods are applied
on the population and randomly sampled after excluding their intersection.

is applied to one half. Then we observe the top k/2 units in each
half, resulting in k total observations.

There is an alternative design: consider Sk and Tk as (after
discarding their intersection) disjoint subpopulations and observe
k/2 random units from each. We think of this design as a survey
because it randomly samples the two target sets in the population
as opposed to applying the targeting methods to random halves
of the population. See Fig. 1 for a graphical comparison of the two
designs.

The remainder of the paper is organized as follows. After defin-
ing a framework in Section 2, we show in Section 3 that the RCT
provides unrepresentative observations and we derive a formula
for the bias. In Section 4,we show that the survey gives an unbiased
estimate of δ and discuss implementation details. In Section 5, we
apply the above to a field trial to evaluate targeting of residential
lead hazard investigations using a predictive model and simulate
sampling distributions for both designs.

The issue in the RCT stems from the interaction between finite
populations, partitions, and order statistics. It is of particular inter-
est as an example of the failure of random assignment to solve an
estimation problem. In this sense it is an example of randomization
bias (Heckman and Smith (1995), Sianesi (2017)) and adds to
the collection of pitfalls that researchers should consider before
selecting an RCT design (Deaton and Cartwright, 2016). Our work
anticipates further developments in economics that will be im-
portant as predictive modeling becomes an increasingly common
policy tool.

2. Framework

A targeting method S is a function which, given a set X ′ of units
and a number j selects a subset Sj(X ′) of size j.When X ′

= X , the full
population, we use the shorthand Sj := Sj(X). Let YSj(X ′) denote the
outcome y restricted to the set Sj(X ′) and ȲSj(X ′) its mean. This is the
proportion of units in Sj with positive outcome, i.e. the precision
of S at resource level j. The population precision at j is then ȲSj but
we denote it by µSj to reflect that it is a population (albeit a finite
population) object.

Any model of y is also a targeting method. That is, suppose we
have such amodel which estimates for any unit x the probability.3
P(y|x). The corresponding targetingmethodwould select, from any
subset X ′, the units in X ′ with the j highest model probabilities.4

An expert S may not practically be able to rank all units. Instead,
theymay only be able to produce a list Sj(X ′). However, we assume
that the expert is rational in the sense that there is an underlying

3 Or a score which is not necessarily a probability.
4 Ties may be broken randomly. For simplicity, we do not explicitly consider

stochastic targeting methods.

Fig. 2. Precision curves for targeting methods in Section 5.

ranking of all units X that is consistently applied to any subset X ′.
This implies that any Sj(X ′) is ordered and we write

Sj(X ′) = (s1(X ′), s2(X ′), . . . , sj(X ′))

to reference units by their rank. When X ′
= X , we use the

shorthand sj := sj(X).
Following the machine learning literature (Baeza-Yates et al.,

1999), we define the precision curve of a targeting method S to be
µSj as a function of j. See Fig. 2. Note that when k = N the entire
population is selected, so precision at N of any targeting method is
the proportion of positive outcomes in the population.

3. Randomized controlled trial design

A natural RCT to estimate δ using k observations is as follows
(see Fig. 1(a)):

1. Randomly partition the population into disjoint halves: X =

X ′
∪ X ′′ with X ′

∩ X ′′
= ∅.

2. Use S to select and observe the top k/2 units from X ′:
Sk/2(X ′).

3. Use T to select and observe the top k/2 units from X ′′:
Tk/2(X ′′).

4. Calculate

δ̂RCT := ȲSk/2(X ′) − ȲTk/2(X ′′).

Note we have assumed N and k are even so N/2 and k/2 are
integers.

A hint of the problem with this design arises when carefully
defining its terms. Since a traditional RCT applies the same treat-
ment to all units in a treatment group,wemust have that: there are
just two ‘‘units’’, the subpopulations X ′ and X ′′; the ‘‘treatments’’
are k/2 selections and observations from each subpopulation; the
‘‘outcome’’ is the precision in the subpopulation, e.g. ȲSk/2(X ′). The
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