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h i g h l i g h t s

• Search with infinite horizon and multiple distributions is studied.
• The optimal search rule has a constant reservation value.
• It is optimal to sample the same distribution in every period.
• The result holds for full-recall, no-recall and stochastic-recall.
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a b s t r a c t

With infinite horizon, optimal rules for sequential search from a known distribution feature a constant
reservation value that is independent of whether recall of past options is possible. We extend this result
to the case when there are multiple distributions to choose from: it is optimal to sample from the same
distribution in every period and to continue searching until a constant reservation value is reached.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In the standard optimal search problem (e.g. Lippman and Mc-
Call, 1976), the choice is to either stop searching and consume the
best option available or to continue the costly search. Continuation
yields a draw of a single observation from some known distri-
bution. With infinite horizon, the optimal search rule is simple
and independent of the possibility of recall: continue searching
until a constant reservation value, uniquely determined by the
distribution, has been reached.

A natural extension of the standard problem is to allow the
searcher to also choose the search intensity, modelled as the
number of simultaneous observations drawn from the known
distribution.1 With infinite horizon, Morgan (1983, Proposition 1)

* Correspondence to: University of Bern, Schanzeneckstrasse 1, 3001 Bern,
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E-mail address: igor.letina@vwi.unibe.ch (I. Letina).
1 There are alternative ways to model search intensity. For example, Karni and

Schwartz (1977a) model it as the amount of time between two consecutive search
attempts.

shows that with no recall it is optimal to search with constant
intensity until stopping. With full recall, Morgan (1983, Propo-
sition 5) only establishes that the optimal intensity is weakly
decreasing, leaving open the possibility that the searcher might
reduce intensity after a favourable draw. In an interesting ap-
plication to delegated R&D, Poblete and Spulber (2017, Lemma
3) show optimality of constant intensity with full recall while
assuming existence, uniqueness and reservation value strategies.
We strengthen these results and show that the optimal intensity
is constant — regardless of the possibility of recall and without
restricting the class of admissible search rules.

The choice of search intensity is a special case of a more gen-
eral problem in which the searcher chooses a distribution from
which to draw the observation. For example, the searcher could
be choosing the riskiness of search. Similarly, no recall and full
recall are special cases of amore general problem inwhich recall is
stochastic as in Landsberger and Peled (1977).We incorporate both
of these generalizations in an otherwise standard search model
with infinite horizon and show that it is optimal to sample from the
same distribution in every period and to continue searching until
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the constant reservation value associatedwith this distribution has
been achieved.

As we will discuss in more detail later, our result is a very
natural one in light of the related literature. First, once the infinite
horizon of the search problem is taken into account, our optimal
search rule corresponds to the one that Weitzman (1979) has
identified as optimal for a search problem with full recall and
finite horizon. Second, the irrelevance of recall obtains for the same
reason as in the related results for search problems with infinite
horizon in DeGroot (1970, p. 335), Lippman and McCall (1976, p.
169), and Landsberger and Peled (1977, Theorem 2), namely that
the option of recall is never exercised when full recall is possible.

2. Model

While search is ongoing, a searcher decides in each period t =

0, 1 . . . whether to sample from one of n available distributions
(take the action at ∈ A = {1, . . . , n}) or to stop (at = 0). Stopping
yields a payoff xt ∈ X in the current period, where xt is the option
the searcher has in hand at the beginning of period t and X ⊂ R++

is a finite set. Once search has been stopped, no further decisions
can be taken and no further payoffs accrue. If the searcher samples
from distribution at , the state variable xt transitions to xt+1 ∈ X
withprobability p(xt+1|xt , at ),where xt+1 is the option the searcher
has in hand at the beginning of period t + 1. The cost of sampling
from distribution a is c(a) > 0. The per-period discount factor is
δ ∈ (0, 1]. The searcher’s problem is to maximize her expected
discounted payoff (for every initial condition x0 ∈ X) by choosing
a search rule µ : X → A ∪ {0} that specifies for each state
whether search should be continued by sampling fromdistribution
a (µ(x) = a) or be stopped (µ(x) = 0).2

The above model can be embedded into a Markov decision
process framework (Bertsekas, 1995) by (i) appending a terminal
state x = 0 that is reached with probability one whenever the
stopping action a = 0 is taken and (ii) supposing that the only
available action (at zero cost) in the terminal state is a = 0. With
discounting (δ < 1) standard results (e.g. Bertsekas, 1995, Chapter
1.2) ensure that the Bellman equations

v∗(x) = max

⎧⎨⎩x,max
a∈A

⎧⎨⎩δ
∑
y∈X

v∗(y)p(y|x, a) − c(a)

⎫⎬⎭
⎫⎬⎭ (1)

have a unique solution v∗
: X → R and that a search rule µ∗ is

optimal iff it satisfies

µ∗(x) =

⎧⎨⎩
0 ⇒ v∗(x) = x
a′

∈ A ⇒ v∗(x) = δ
∑
y∈X

v∗(y)p(y|x, a′) − c(a′). (2)

In particular, an optimal search rule exists. The same conclusions
hold without discounting (δ = 1) because the Markov decision
process formulation of our search problem is a special case of
the stochastic shortest path problem analysed in Bertsekas and
Tsitsiklis (1991).3

We impose additional structure on the conditional probabil-
ity distributions p(·|x, a) that accommodates the familiar cases
of search with no or full recall but also allows for more general
specifications.

2 The restriction to such stationary search rules is without loss of generality; see
the sources cited in the next paragraph.
3 Assumption 1 in Bertsekas and Tsitsiklis (1991) is satisfied: First, there exists an

absorbing, cost- (and benefit)-free state (the terminal state 0). Second, there exists a
proper stationary policy (choose the terminal action in each state). Third, improper
stationary rules (policies for which there is a strictly positive probability that the
terminal state is never reached) result in infinite expected cost because c(a) > 0
for all a ∈ A. Assumption 2 in Bertsekas and Tsitsiklis (1991) holds because A is
finite. Our claim then follows from Proposition 2 in Bertsekas and Tsitsiklis (1991).

Assumption 1. For all a ∈ A there exists a probability distribution
q(·|a) on X such that p(y|x, a) = q(y|a) holds for all y > x ∈ X .

If the condition p(y|x, a) = q(y|a) holds for all x and y in X
the only option available to the searcher in period t + 1 after
choosing a in period t is the realized draw from the distribution
q(·|a), so that there is no recall. With perfect recall, the option xt
remains available in period t + 1 after a draw from q(·|a) has been
taken,which corresponds toAssumption 1holdingwith p(x|x, a) =∑

y≤xq(y|a), and p(y|x, a) = 0 for y < x. Stochastic recall as in
Landsberger and Peled (1977) is obtained by taking p(·|x, a) to be
convex combinations of the probability distributions describing
the no-recall and the full-recall case. Assumption 1 covers this case
while allowing for more general specifications.

3. Optimal search rules

Define for each action a ∈ A the reservation value s(a) as the
unique solution (Step 1, proof of Proposition 1) to the equation

δ
∑
y∈X

max{y, s(a)}q(y|a) − s(a) = c(a). (3)

When there is only one distribution to sample from, it is well-
known (DeGroot, 1970; Lippman and McCall, 1976) that both in
the no-recall and the full-recall case the optimal rule is to continue
searching until the current option xt exceeds the reservation value
s(a). The same kind of reservation value rule is optimal under As-
sumption 1when searching frommultiple distributions.Moreover,
the searcher optimally samples from the same distribution a∗ with
the highest reservation value until the reservation value s(a∗) of
this distribution has been achieved:

Proposition 1. Let Assumption 1 hold and let a∗
∈ argmax s(a).

The unique solution to the Bellman equations (1) is given by v∗(x) =

max{x, s(a∗)} and the rule

µ∗(x) =

{
0 if x > s(a∗)
a∗ if x ≤ s(a∗) (4)

is optimal.

We provide a direct and straightforward proof in the Appendix.
To obtain intuition, consider the problem from Weitzman (1979).
There, a searcher called Pandora faces a finite number of closed
boxes with an uncertain reward hidden in each box. For each box
there is a cost of opening it. The problem is to determine the order
in which to open the boxes, andwhen to stop searching and accept
the highest reward sampled so far. The optimal rule (Pandora’s
Rule) assigns a reservation value to each box, depending only on
the properties of that box, and then specifies to open the boxes in
descending order by reservation value until the highest sampled
reward exceeds the reservation value of every closed box.

With full recall, our search problem is like Pandora’s problem
when there are infinite copies of each of n different types of boxes.
The optimal search rule identified in Proposition 1 is nothing but
Pandora’s Rule applied to this scenario, namely to keep opening
boxes of the type with the highest reservation value until the most
recent draw exceeds this reservation value. Since search only con-
tinues if all previously sampled rewards are below the reservation
value of the best type of box and the option to open another such
box is always available, this rule never uses the possibility to recall
an earlier reward. As the optimality of a rule cannot be affected
by eliminating options that the rule never exercises, the result in
Proposition 1 holds regardless of whether recall is possible or not.
The fact that Assumption 1 suffices for the result can be understood
as a generalization of the observation inWeitzman (1979) that the
optimal search rule is not affected by rearranging the probability
distribution for rewards below the reservation value.
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