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h i g h l i g h t s

• Ex-ante stability as a fairness condition is very demanding.
• Precise bounds on the size of the support of ex-ante stable lotteries are given.
• The result can be interpreted as an impossibility result.
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a b s t r a c t

We study ex-ante priority respecting (ex-ante stable) lotteries in the context of object allocation under
thick priorities.We show that ex-ante stability as a fairness condition is very demanding: Only few agent–
object pairs have a positive probability of beingmatched in an ex-ante stable assignment.We interpret our
result as an impossibility result. With ex-ante stability, one cannot go much beyond randomly breaking
ties and implementing a (deterministically) stable matching with respect to the broken ties.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

A classical matching problem with many real-world applica-
tions is the assignment of indivisible objects to agents where
objects are rationed according to priorities. In applications, such
as the school choice problem (Abdulkadiroglu and Sönmez, 2003),
priorities are often thick, i.e. many agents have the same priority
to obtain a certain object. Thus, it can be the case that agents
obtain different assignments ex-post, even though they have the
same priorities and preferences. However, ex-ante, some form of
fairness can be restored by the use of lotteries. This has motivated
researchers to study the problem of designing priority respecting
lotteries for allocating objects.

A minimal ex-ante fairness requirement for random assign-
ments under priorities is that the lottery should respect the pri-
orities. One way of formalizing this requirement is the following:
An agent i has ex-ante justified envy if there is an object s where
a lower priority agent j has a positive probability of receiving the
object and i would rather have the object s than another object
which he receives with positive probability in the lottery under
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consideration. In this case, it would be natural to eliminate the
justified envy, i.e. changing the probability shares such that i has
a higher chance of receiving s at the expense of the lower ranked
agent j. Ex-ante stability requires that there is no ex-ante justified
envy. In the school choice set-up, ex-ante stability has been in-
troduced by Kesten and Ünver (2015). For the classical marriage
model the condition was first considered by Roth et al. (1993). He
et al. (forthcoming) define an appealing class of mechanisms that
implement ex-ante stable lotteries.

Even though ex-ante stability is, in a sense, a minimal ex-ante
fairness requirement, it is demanding. In an environment with
strict priorities (no ties) and where each school has one seat to
allocate, Roth et al., 1993 (Corollary 21) prove that each student has
a positive probability of receiving a seat at, at most, two schools. In
other words, an ex-ante stable lottery is almost deterministic. We
generalize this result to the more general set-up with quotas and
ties. With strict priorities, we show that an ex-ante stable lottery
is almost degenerate, since

• each agent has a positive probability at at most two distinct
objects for receiving a copy of that object.
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• For each object all but possibly one copy are assigned deter-
ministically. For the one copy that is assigned by a lottery,
two agents have a positive probability of receiving it.

With ties in the priorities, ex-ante stability is naturally less de-
manding. However, ex-ante stability imposes a lot of structure on
the lottery. We show that the size of the support of an ex-ante
stable lottery (the number of pairs being matched with positive
probability) is determined by the number of ties the lottery ‘‘uses’’
(i.e. how many agents who have equal priority at some object are
matched with positive probability to that object). More precisely,
we show that for each ex-ante stable lottery the size of the support
is determined by the size of the ‘‘cut-off’’ priority classes: Here, cut-
off priority classes are the lowest priority classes at an object, such
that an agent of that priority class gets that object with positive
probability.

The proofs in this paper use the graph representation of as-
signment problems due to Balinski and Ratier (1997). As far as we
know, this representation has not been used so far in the study of
lotteries. We think that our results demonstrate the usefulness of
this particular representation for the study of random assignments
with priorities.

2. Model

There is a set of n agents N and a set of m object types M . A
generic agent is denoted by i and a generic object type by j. Of
each object type j, there is a finite number of copies qj ∈ N. We
assume that there are as many objects as agents,

∑
j∈Mqj = n.1

Each agent i has strict preferences Pi over different types of objects.
Each object type j has a strict priority ranking ≻j of agents. Later in
Section 3.2 we will also consider the case where object types have
indifferences in their priorities.

A deterministic assignment is a mapping µ : N → M such
that for each j ∈ M we have |µ−1(j)| = qj. A random assignment
is a probability distribution over deterministic assignments. By the
Birkhoff–von Neumann Theorem, each random assignment corre-
sponds to a bi-stochastic matrix and, vice versa, each such matrix
corresponds to a random assignment (see Kojima and Manea,
2010) for a proof in the set-up thatwe consider). Thus each random
assignment is represented by amatrixΠ = (πij) ∈ RN×M such that

0 ≤ πij ≤ 1,
∑
j∈M

πij = 1,
∑
i∈N

πij = qj,

where πij is the probability that agent i is matched to an object of
type j. The support of Π is the set of all non-zero entries of the
matrix Π , i.e.

supp(Π ) := {ij ∈ N × M : πij ̸= 0}.

We say that agent i is fractionallymatched to object type j if there
is a positive probability of the pair being matched but they are
not matched for sure, i.e. 0 < πij < 1. A random assignment
represented by the matrix Π = (πij) is ex-ante blocked by agent
i and object type j if there is some agent i′ ̸= i with πi′j > 0 and
i ≻j i′ and some object type j′ with πij′ > 0 and j Pi j′. A random
assignment is ex-ante stable if it is not blocked by any agent–
object type pair.2

1 Our results can be generalized to the case where the number of objects and
agents differ by adding dummy agents and objects. See Aziz and Klaus (2017), for
the details of this construction.
2 For deterministic assignments, ex-ante stability is equivalent to the usual

notion of a stable matching. In particular, ex-ante stable assignments always exists,
since stable matchings always exist.

2.1. Graph representation

Next, we introduce the graph representation of Balinski and
Ratier (1997). In the following, a directed graph Γ is a pair
(V (Γ ), E(Γ )), where V (Γ ) is a finite set of vertices and E(Γ ) is a
set of ordered pairs of vertices called arcs. For a randomassignment
Π , we construct a directed graphΓ (Π ) as follows: The vertices are
the agent–object type pairs,

V = N × M.

There are two kind of arcs. A horizontal arc connects two vertices
ij and ij′ that contain the same agent. A vertical arc connects two
vertices ij and i′j that contain the same object type. The direction of
the arc is determined by the preferences respectively priorities. A
horizontal arc points to the more preferred object type according
to the agent’s preferences. A vertical arc points to the agent with
higher priority in the object type’s priority. Moreover we only
consider those arcs which origin in a pair ijwith πij > 0. Thus

E(Π ) := {(ij, i′j′) ∈ V 2
: πij > 0, (i = i′, j′ Pi j or j = j′, i′ ≻j i)}.

Immediately from the definition of ex-ante stability we obtain the
following necessary and sufficient condition for ex-ante stability
(see Fig. 1).

Lemma 1. If Π = (πij) is ex-ante stable, then there cannot exist both
a horizontal arc (ij′, ij) and a vertical arc (i′j, ij) in Γ (Π ) pointing to
ij.

3. Results

3.1. Strict priorities

We are ready to state and prove the main results for the case
with strict priorities. First we show that ifΠ represents an ex-ante
stable random assignment, then it has small support.

Proposition 1. If priorities are strict, then for each ex-ante stable
random assignment Π we have

|supp(Π )| ≤ n + m.

Proof. We prove the proposition by a double counting argument.
Let U ⊆ V be the set of vertices ij that have an incoming horizontal
arc in Γ (Π ) and positive probability πij > 0. For each i ∈ N ,
let Mi(Π ) ⊆ M be the set of object types j such that ij has an
incoming horizontal arc and πij > 0. By definition, we have |U | =∑

i∈N |Mi(Π )|. Let i ∈ N . Either i is deterministically matched or he
is fractionally matched to multiple object types. In the first case,
we have Mi(Π ) = ∅. In the second case, let j ∈ Mi(Π ) be the
least preferred object type (according to i’s preferences) among the
object types that are fractionally matched to i under Π . Since j is
i’s least preferred object type to which he is matched, there is for
each such object type j′ ̸= j a horizontal arc pointing from ij to ij′.
Thus, in either case, |supp(Πi)| − 1 = |Mi(Π )| where supp(Πi) is
the support of the i-row of Π . Summing over N we obtain

supp(Π ) − n ≤

∑
i∈N

|Mi(Π )| = |U |. (1)

Next we bound |U | from above. Let j ∈ M and i, i′ ∈ N . Suppose
πij > 0, πi′j > 0 and furthermore that there is a horizontal arc
pointing to ij and another horizontal arc pointing to i′j. If therewere
a vertical arc pointing from ij to i′j, we would have a contradiction
to Lemma 1 and vice versa if therewere a vertical arc pointing from
i′j to ij, we would also have a contradiction to Lemma 1. Thus for
each j there is at most one agent i such that πij > 0 and ij has an
incoming horizontal arc. Thus |U | ≤ m. Combining this inequality
with Inequality (1), we obtain the desired result. □



Download English Version:

https://daneshyari.com/en/article/7349291

Download Persian Version:

https://daneshyari.com/article/7349291

Daneshyari.com

https://daneshyari.com/en/article/7349291
https://daneshyari.com/article/7349291
https://daneshyari.com

