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h i g h l i g h t s

• We extend the literature on the calculation/interpretation of impacts for SAR models.
• We compute the individual impacts for an exogenous variable introduced nonlinearly.
• Averaging these impacts smooths spatial interaction effects which may be of interest.
• We provide a graphical analysis of these impacts, with their confidence intervals.
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a b s t r a c t

This paper extends the literature on the calculation and interpretation of impacts for spatial autore-
gressive models. Using a Bayesian framework, we show how the individual direct and indirect impacts
associated with an exogenous variable introduced in a nonlinear way in such models can be computed,
theoretically and empirically. Rather than averaging the individual impacts, we suggest to graphically
analyze them along with their confidence intervals calculated from Markov chain Monte Carlo (MCMC).
We also explicitly derive the form of the gap between individual impacts in the spatial autoregressive
model and the corresponding model without a spatial lag and show, in our application on the Boston
dataset, that it is higher for spatially highly connected observations.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Spatial autoregressive (SAR) models are now widely used to
analyze spatial economic interactions in various applications. For
example, such a model is appropriate for the housing market
since housing prices depend on prices of recently sold neighboring
homes (Anselin and Lozano-Gracia, 2008). This dependence struc-
ture comes from the fact that sellers presumably use information
on neighboring homes to determine the asking price. The use of
a SAR model, besides providing a richer characterization of the
market, has important implications for impacts calculations (for
early statements of this issue, see Anselin and Le Gallo, 2006; Kim
et al., 2003; Kelejian et al., 2006). Indeed, their computation and in-
terpretation is less straightforward than in standardmultiple linear
a-spatial regressionmodels: any change in an explanatory variable
for a givenobservationnot only affects the observation itself (direct
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impact) but also affects all other observations indirectly (indirect
impact).

LeSage and Pace (2009) show how to theoretically derive these
marginal impacts in SAR models. For n spatial observations, they
obtain an×nmatrix of impacts for one exogenous variable. In order
to have a compact representation of these impacts, they propose
to report one direct impact equal to the average of the diagonal
elements of thematrix ofmarginal impacts and one indirect impact
equals to the average row sums of the non-diagonal elements of
that matrix. However, when the exogenous variable of interest is
introduced in a nonlinear way in the SAR model (e.g. in the form
of polynomial or splines function), averaging the impacts in such a
way is irrelevant.

In this paper, we extend the work of LeSage and Pace (2009) on
impacts computation and estimationwhen the exogenous variable
of interest appears in a nonlinear way in a SAR model. We also
derive the form of the gap between impacts in the spatial autore-
gressive model and the corresponding model without a spatial lag
and show in our application that it is higher for spatially highly
connected observations.
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The remainder of the paper is organized as follows. The second
section presents the theoretical derivation of direct and indirect
impacts associated with an exogenous variable introduced in a
nonlinear way in a SAR model. The third section introduces the
estimation strategy which is applied on the well-known Boston
housing dataset described in the fourth Section. The obtained em-
pirical results are presented in the fifth Section. The sixth section
concludes and comments on possible extensions.

2. Impacts in theory

Consider the following spatial autoregressive model1

y = ρWy + Xβ + f (z) + ϵ (1)

where y is the (n × 1) dependent variable that exhibits variation
across spatial observations,X is the (n×k)matrix of linear explana-
tory variables including an intercept term, with the associated
parameters β contained in a (k× 1) vector, z is the (n× 1) variable
the impact of which on y is nonlinear, andW is a specified constant
(n × n) spatial weight matrix with the usual assumptions. z, our
variable of interest is additively separable from the other X to
simplify notations. Our approach can easily be extended to many
variables introduced non-linearly with interaction effects between
them. We assume that each term of the disturbance vector ϵ of
dimension (n × 1) is normally and identically distributed with
zero mean and variance σ 2. The scalar ρ measures the strength
of the spatial dependence. f (·) is a linear-in-parameters function,
for instance a polynomial function of degree p: f (z) =

∑p
j=1γjz j,

a spline2 function of order p and q knots tl, tl, . . . , tq: f (z) =∑p
j=1γjz j +

∑q
l=1δl(z − tl)

p
+, a B-spline function of order p and q

knots: f (z) =
∑p+q

j=1 γjBj(z).3
Eq. (1) can be rewritten in the following reduced form

y = V (W )Xβ + V (W )f (z) + V (W )ϵ (2)

with

V (W ) = (In − ρW )−1
=

⎡⎢⎢⎢⎢⎣
V11 V12 V13 · · · V1n
V21 V22 V23 · · · V2n
V31 V32 V33 · · · V3n
...

...
...

. . .
...

Vn1 Vn2 Vn3 · · · Vnn

⎤⎥⎥⎥⎥⎦
and In the identitymatrix of order n. Note thatwe assumed that the
matrix In −ρW is not singular to reach the reduced form in Eq. (2).

In this paper, we are interested in the estimation of the partial
derivative of y with respect to changes in the nonlinear variable z
in our SAR model. In models containing a spatial lag, the measure
of the partial derivative of the dependent variable with respect to
an explanatory variable is less straightforward than in standard
linearmodels. Indeed the standard linear regression interpretation
of coefficient estimates (̂βq =

∂ ŷ
∂xq

) as partial derivatives no longer
holds in SAR model since the matrix of explanatory variable is
transformed by the n×n inversematrix V (W ). In such amodel, any
change to an explanatory variable for a given observation affects
the dependent variable of the observation itself (direct impact)
and potentially the dependent variable of all other observations
(indirect impact) through V (W ). We elaborate on this observation
to derive the impacts for the variable z introduced in a nonlinear
way.

1 Our approach can also be applied on spatial Durbin model.
2 See Hastie and Tibshirani (1990) for details.
3 Note that the B-spline function (B stands for ‘‘basis’’) is an extension of the

spline function. The Bj, j = 1, . . . , p + q are defined recursively to avoid numerical
instability.

Starting from the reduced form in Eq. (2), the matrix of re-
sponses to a change of the nonlinear variable z on y is given by

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂y1
∂z1

∂y1
∂z2

· · ·
∂y1
∂zn

∂y2
∂z1

∂y2
∂z2

· · ·
∂y2
∂zn

...
...

. . .
...

∂yn
∂z1

∂yn
∂z2

· · ·
∂yn
∂zn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎣
V11fz(z1) V12fz(z2) · · · V1nfz(zn)
V21fz(z1) V22fz(z2) · · · V2nfz(zn)

...
...

. . .
...

Vn1fz(z1) Vn2fz(z2) · · · Vnnfz(zn)

⎤⎥⎥⎥⎥⎦
with fz(z) the derivative of f (z).

Since we have an n × n matrix of impacts, the challenge is to
find a way to compactly report them. In the case of an exogenous
variable that enters linearly, LeSage and Pace (2009) suggest to
compute the average of the main diagonal elements and the aver-
age of the off-diagonal elements of the impacts matrix to obtain
a summary measure of the direct impact and the indirect impact
respectively. This method of summarizing impacts is irrelevant
when the effect of a variable as z can be positive and negative
at different parts of it support. Therefore, we propose to plot the
individual impacts (i.e. impacts of each observation) along with
their confidence intervals. The individual direct (IDI) and total (ITI)
impacts of the nonlinear variable z on yi are given by4

IDIi =
∂yi
∂zi

= Viifz(zi) (3)

ITIi =
∂yi
∂z

=

n∑
j=1

Vijfz(zj). (4)

From these expressions, we can reach the individual indirect
impact (III) as follows

IIIi = ITIi − IDIi. (5)

3. Estimation strategy

To get the individual impacts for z, we proceed in two steps.
We first estimate the parameters of the SAR model, and then
in a second step use them to compute V (W ) and the derivative
of f (z), i.e. fz(z) for each observation i. Note that, to estimate
V (W ) = (In − ρW )−1, we have followed an approach suggested
by LeSage and Pace (2009, page 111), based on the Leontief
expansion of V (W ), which is computationally more efficient than
the brute force approach (i.e. calculating V (W ) per se) for large n:
V (W ) = (In − ρW )−1

≈ In + ρW + ρ2W 2
+ · · · + ρqW q. We have

chosen q = 250 to approximate V (W ) in our application.5

4 Note that our approach is also appropriate to the case of an interacted explana-
tory variable, e.g., y = ρWy + zβ + xzγ + ϵ, where the individual direct and total
impact would be respectively ∂yi

∂zi
= Vii(β + xiγ ) and ∂yi

∂z =
∑n

j=1Vij(β + xjγ ).
This logically means that the values of the variable x at each observation produce
observation-level impact estimates of interest. To assess the role played by x in
determining observation-level effects, we could plot these impacts estimates for
sorted values of x. We thank the reviewer for pointing out this.
5 The trace-based approach proposed by LeSage and Pace (2009, pp. 114–115) to

approximate the direct and indirect impacts (defined respectively as the average of
the diagonal elements of the matrix of marginal impacts and the average row sums
of the non-diagonal elements of that matrix) does not apply to our case since we
are not interested in aggregated measure of impacts.
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