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h i g h l i g h t s

• Simple practitioner’s approach to test for change-in-mean under long memory.
• CUSUM test based on the fractionally differenced series.
• Limit distribution is that of the supremum of a standard Brownian bridge.
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a b s t r a c t

We propose a simple test on structural change in long-range dependent time series. It is based on the
idea that the test statistic of the standard CUSUM test retains its asymptotic distribution if it is applied
to fractionally differenced data. We prove that our approach is asymptotically valid, if the memory is
estimated consistently under the null hypothesis. Therefore, the well-known CUSUM test can be used on
the differenced data without any further modification. In a simulation study, we compare our test with a
CUSUM test on structural change that is specifically constructed for long-memory time series and show
that our approach performs reasonably well.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Both long memory and structural change are typical features
of macroeconomic and financial time series. Common examples
that are considered to possess at least one of these features are
inflation rates (cf. Hsu (2005), Bos et al. (2014)), volatilities
(cf. Lu and Perron (2010), Xu and Perron (2014), Chiriac and
Voev (2011)), unemployment rates (cf. Van Dijk et al. (2002)), and
trading volumes (cf. Fleming and Kirby (2011)). A recent review
can be found in Gil-Alana and Hualde (2009).

Testing for structural change is important to avoid model mis-
specification. Unfortunately, this is complicated by the presence
of long memory, since long memory and structural change are
easily confused. This phenomenon, called spurious long memory,
is due to the fact that they can show similar characteristics, such
as slowly decaying autocorrelations, or a pole in the periodogram
at Fourier frequencies close to zero (see for example Diebold and
Inoue (2001) or Granger and Hyung (2004)). To avoid mistaking
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long memory for structural change, it is therefore necessary to
use robust change-in-mean tests that allow for long-range depen-
dence.

One of themost prominent change-in-mean tests is the CUSUM
test that was originally proposed by Brown et al. (1975). Here, we
focus on the version of Ploberger and Krämer (1992) that is based
on OLS residuals, but our results also apply to the recursive ver-
sion of the test. Wright (1998) and Krämer and Sibbertsen (2002)
show that the limiting distribution of the CUSUM test under long
memory is different to the short-memory case. This results in the
fact that the standard test always rejects asymptotically when the
long-memory parameter d is larger than zero. The normalization
factor of the CUSUM statistic needs to be larger to account for
the slow convergence of the highly persistent long-memory series.
Furthermore, the limiting distribution in the short-memory case is
based on independent increments, whereas the increments in the
long-memory limit distribution are dependent.

A solution is to use another normalization factor and critical
values from a fractional Brownian bridge such that the statistic
converges to a well defined process and has correct critical values.
For Gaussian processes this is done by Horváth and Kokoszka
(1997) and extended by Wang (2008) to a wider range of linear
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processes. However, themodified test converges to a non-standard
limiting distribution that depends on d.

Recently, Iacone et al. (2013) and Chang and Perron (2016),
among others, consider inference about breaks in trends under
long memory. Dehling et al. (2013) modify a Wilcoxon-type test
for a change-in-mean under long memory by using a consistent
estimator of the long run variance. Another group of change-in-
mean tests under long memory includes Shao (2011), Iacone
et al. (2014), and Betken (2016), who apply a self normalization
approach to robustify existing tests.

This paper proposes a different approach as an intuitive
alternative—particularly for practitioners. In a two-step procedure
we first estimate the long-memory parameter and then perform
the standard CUSUM test for structural change on the d̂ times
differenced series. This has the advantage that the standardCUSUM
test is implemented inmost common software packages for statis-
tical analyses. We show that this approach is asymptotically valid.
Hence, at least asymptotically, there is no need to use themodified
versions of the standard tests.

The rest of the paper is organized as follows. Section 2 describes
the model along with the memory robust CUSUM test of Horváth
and Kokoszka (1997) and Wang (2008). Section 3 provides and
discusses our new test based on differenced data. In Section 4 a
Monte Carlo simulation is conducted and Section 5 concludes.

2. CUSUM type tests

Weconsider a signal-plus-noisemodel1 where the observations
(yt )t≥1 are generated by the stochastic process

yt = µt + ϵt . (1)

Here, the regressionmeans (µt )t≥1 are assumed to be deterministic
and fulfill |µt | < ∞, for all t = 1, . . . , T . For the error term
we assume that ϵt = ∆−dvt , where vt is a mean zero martingale
difference sequence with finite variance, |d| < 1/2,∆d

= (1 − L)d
is the fractional differencing operator defined as

(1 − L)d =

∞∑
k=0

πk(d)Lk =

∞∑
k=0

Γ (k − d)
Γ (−d)Γ (k + 1)

Lk,

and L is the lag operator. That means we consider a process with a
possibly time varying mean and stationary fractionally integrated
errors ϵt . Given a specific time series y1, . . . , yT our interest lies in
testing the null hypothesis of a constant unconditional mean

H0 : µ1 = · · · = µT = µ

against the alternative of a shift in mean

H1 : µt ̸= µs for some 1 < t ̸= s < T .

The CUSUM test statistic under long memory (CUSUM-LM) pro-
posed by Horváth and Kokoszka (1997) and Wang (2008) is based
on

ST (τ , d̂) =
1

σ̂cT 1/2+̂d

(
⌊τT⌋∑
t=1

ϵ̂t

)
, τ ∈ (0, 1), (2)

where ⌊·⌋ denotes the integer part of its arguments, σ̂c and d̂ are
consistent estimators of the long run variance and the memory
parameter and ϵ̂t is the OLS residual from (1). The test statistic is
given by

QT = sup
0<τ<1

|ST (τ , d̂)|.

1 One could also assume a standard regression model with µt = β ′
txt and test

whether βt = β .

For T → ∞ it converges in distribution to the supremum of a
fractional Brownian bridge

QT ⇒ sup
0<τ<1

|Bd(τ ) − τBd(1)|,

where Bd(τ ) is a fractional Brownian motion and ⇒ denotes con-
vergence in distribution.

The statistic also nests the standard CUSUM test for short-
memory time series when d = 0 and σ̂c is an autocorrelation con-
sistent (HAC) long run variance estimator (cf. for example Newey
and West (1987), or Andrews (1991)). In this case the statistic
converges to the supremum of a standard Brownian bridge. Under
long memory, σc is usually estimated using the MAC estimator
of Robinson (2005).

3. CUSUM test after fractional differencing

Instead of using the CUSUM-LM test, we suggest to use the
standard CUSUM test on the fractionally differenced series

y∗

t (̂d) = ∆d̂yt = ∆d̂µt +∆d̂ϵt = µ∗

t + v∗

t , (3)

where µ∗
t is the fractionally differenced mean, and v∗

t is the frac-
tionally differenced error term, such that v∗

t = vt in (1), if d̂ = d.
Now, denote the partial sum statistic from (2) calculated from

the residuals v̂∗
t and under the assumption that d = 0, by S∗

T (τ , 0).
The corresponding CUSUM test statistic is denoted by Q ∗

T .
Both approaches, the CUSUM-LM test, as well as ours, require a

consistent estimate of dunderH0. Our test requires that for T → ∞

the differenced series y∗
t (̂d) is I(0) and the CUSUM-LM test needs

an estimator of d directly in the denominator of the test statistic,
and indirectly to obtain the correct critical values. This estimate
is usually obtained using the local Whittle estimator of Künsch
(1987) and Robinson (1995).

By using fractional differences we implicitly assume that yt =

µt and ϵt = 0, for t ≤ 0, which means that the process was equal
to its mean before the beginning of the sample period. This corre-
sponds to a fractionally integrated process of type II. Fractionally
integrated processes of type I, on the other hand, assume that ϵt
has an infinite past. For a detailed discussion of type I and type II
fractional Brownian motions see Marinucci and Robinson (1999).

Different from our differencing approach, the CUSUM-LM test
usually assumes a process of type I. However, for 0 ≤ d < 1/2,
type I and type II processes are asymptotically equivalent.

The following theorem provides the limiting distribution of the
test statistic.

Theorem 1. Suppose that d̂ − d0 = oP (T−η), for some arbitrary
small η > 0 and vt = 0 for all t ≤ 0. Then under H0: Q ∗

T ⇒

sup0<τ<1|B0(τ ) − τB0(1)|.

Proof. To prove the theorem, we first show that the partial sum
statistic S̃∗

T (τ , 0) calculated from the fractionally differenced inno-
vation process v∗

t converges in distribution to S̃vT (τ , 0) - the statistic
based on the true innovation sequence vt . Denote δ = d − d̂, then
under H0 with ϵt = ∆−dvt and v∗

t = ∆d̂ϵt from (1) and (3), we
have

v∗

t = ∆−δvt = vt +

∞∑
k=1

θk(δ)vt−k,

where θk(δ) =
Γ (k + δ)

Γ (δ)Γ (k + 1)
.

Therefore, the difference between the fractionally differenced in-
novation series v∗

t and the original innovation sequence vt is given
by

γt = v∗

t − vt =

∞∑
k=1

θk(δ)vt−k. (4)
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