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h i g h l i g h t s

• For continuous-time regression models with nonstationary errors, we showed that conventional nonparametric estimators are not consistent.
• We proposed a new consistent nonparametric estimator.
• We derived the exact convergence rate of the conditional variance of our new estimator.
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a b s t r a c t

We propose a new nonparametric estimator for continuous-time regression models with nonstationary
error terms. While other conventional nonparametric estimators such as the Nadaraya–Watson and local
linear estimators are not consistent, our estimator achieves consistency and asymptotic normality.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Unlike the cointegrating regression, nonstationary regression
models with nonstationary errors have received limited atten-
tion in the literature. This is mainly because nonstationary errors
mostly imply that the regression is spurious, and even if the model
is non-spurious, the nonstationarity itself can often be avoided by
simply differencing the data. Recent studies on various structural
spurious regression models are well illustrated in, e.g., Choi et al.
(2008), Trapani (2012) and Baltagi et al. (2017). Using differenced
data, however, does not always solve the problem especially for
nonlinear cases, since differencing the data changes the entire
dependence structure. For example, if we have a regression model

Yt = f (Xt ) + Ut , (1)
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where f is a nonlinear function, then nonparametrically regressing
Yt −Yt−1 on Xt −Xt−1 will give us some function of Xt −Xt−1, which
is obviously different from our objective function f , a function
of Xt . Therefore, when f is nonlinear, a simple first-differencing
techniquewill not give correct information on the shape of f , which
implies that wemay need a new estimationmethod for such cases.

In this paper, we first show that conventional nonparametric
estimators fail towork for the continuous-timenonstationary error
regression model. So far, the analyses of these estimators were
largely unavailable in the continuous-time framework, though
they are already known to be inconsistent for a simple discrete-
time I(1) error case. Some recent papers, e.g., Benhenni and Rachdi
(2006) and Zhang (2016), consider similar subjects, but their
models are only remotely related to economic or financial analyses.
However, utilizing the new limit theorems in Jeong and Park
(2013), Aït-Sahalia and Park (2016) and Kim and Park (2017), we
show that these conventional estimators are inconsistent in our
continuous-time framework.
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After showing the inconsistency of the conventional estimators,
we then propose a new proper nonparametric estimator. We show
that our estimator is indeed consistent, and obtain the convergence
rate of its conditional error explicitly in terms of the model pa-
rameters. It turns out that the convergence rate depends on both
the time span and sampling interval of the data, which implies
that we can reduce the conditional variance by using frequently
observed data, even when the total time span is not long enough.
This could be considered a useful property of the estimator es-
pecially when analyzing nonstationary high frequency data, since
estimators based on nonstationary data usually suffer from slow
rates of convergence with respect to the total time span.

The rest of the paper is organized as follows. Section 2 presents
our regression model and assumptions. Section 3 introduces var-
ious nonparametric estimators and provides their asymptotics as
our main result. Concluding remarks follow in Section 4. Mathe-
matical proofs are collected in the online supplement.

2. Model and assumptions

We consider the regression model in (1), where f : R →

R is three times continuously differentiable, and X and U are
martingale diffusions. This martingale condition is to simplify our
analysis, but we expect that it can be extended to general diffu-
sions without difficulties. Moreover, since any diffusion process
becomes amartingale diffusion after scale transformation, as noted
in Jeong and Park (2013), it is actually not a restriction of themodel
as long as we know the functional form of the scale function. For
the specification of X and U , we let

dXt = σ (Xt )dWt , dUt = ω(Xt )dVt

with EU0 = 0, where W and V are mutually independent stan-
dard Brownian motions. With this specification, the instantaneous
volatility ofU is allowed to be dependent on the current value of X ,
while the innovations ofX andU are independent of each other.We
let the domain of X be R = (−∞, ∞) without loss of generality,
since we only consider driftless null recurrent diffusions in this
paper.

For the data, we suppose that X and Y are observed at intervals
of length 1 over time (0, T ], which implies that the sample size is
given by n = T/1. We use the two dimensional asymptotics as
illustrated in Aït-Sahalia and Park (2016), which allows that the
sample span increases and the sampling interval decreases at the
same time, i.e., T → ∞ and 1 → 0.

Hereafter, we denote the kernel function as K and the band-
width parameter as h. We also write f ∈ RVa when f is regularly
varying with index a at the boundaries for some a ∈ R. A function
ℓ : (0, ∞) → (0, ∞) is called slowly varying at ∞ if

lim
x→∞

ℓ(λx)
ℓ(x)

= 1

for all λ > 0, and f : (0, ∞) → (0, ∞) is called regularly
varying with index a at ∞ if f (x) = xaℓ(x) for some slowly varying
function ℓ. Since typical examples of slowly varying functions are
the functions of logarithmic order or the functions with non-zero
finite limits at the boundaries, a regularly varying function with
index a can be roughly understood as a function whose boundary
behavior is similar to the behavior of a power law function with
exponent a. Therefore, for most of the regularly varying functions,
the limit order of f can be written only by a power law function,
though, for some cases in which the slowly varying component
ℓ in f (x) = xaℓ(x) is the logarithmic function, for example, the
logarithmic function still remains in the limit order of f . Readers
are referred to Bingham et al. (1989) for the details of regularly
varying functions, and to Kim and Park (2017) for an extension to
functions defined on R.

Now with these notations we assume the following.

Assumption 2.1. (a) σ 2(x), ω2(x) > 0 and are twice continuously
differentiable for x ∈ R.
(b) σ 2

∈ RV−r for r > −1, and its limit order only consists of a
power law function.
(c) ω2

∈ RV−s for s < r + 1, and its limit order only consists of a
power law function.
(d) K : R → [0, ∞) is bounded, twice continuously differentiable,
and symmetric with respect to the origin. Also, K has a bounded
support and satisfies

∫
R K (u)du = 1.

(e) 1T 4
→ 0 and h → 0 as T → ∞ and 1 → 0.

The conditions in Assumption 2.1(a) are standard regularity
conditions for the diffusion processes. Assumption 2.1(b) implies
that σ 2 is asymptotically homogeneous of degree−r at the bound-
aries of R, where the condition r > −1 requires that X is not
stationary, as noted in Jeong and Park (2013). Since we only
consider nonstationary processes here, r > −1 is intentionally
imposed and does not restrict the model. The absence of nontrivial
slowly varying components in the limit orders of σ 2 and ω2 is not
absolutely necessary, but we impose this to write the convergence
rates of the estimators only as functions of T and r . This will help
clarify the exposition of our result.

In Assumption 2.1(c), it seems that the condition s < r + 1
can be relaxed, but we impose this to utilize the limit theorems
in Jeong and Park (2013). Though it certainly restricts the model,
our analysis still includes most of the common interesting cases
such as r = s, in which both the regressor and the error term share
the same asymptotic order. Therefore, we expect that it does little
harm delivering the message of this paper. Assumption 2.1(d) is a
standard condition on the kernel function. Assumption 2.1(e) is a
condition to control the remainder terms arising in our asymptotic
expansions. This requires that the sampling interval diminishes
fast enough as the total data span increases, which implies that our
asymptotics is more suitable for analyzing high frequency data.

3. Estimators and their asymptotics

In this section, we will show that the Nadaraya–Watson and
local linear estimators are not consistent, while our new estima-
tor achieves consistency. Hereafter we let Kh(z) = K (z/h)/h for
notational simplicity.

3.1. Nadaraya–Watson estimator

The Nadaraya–Watson estimator of f at each x ∈ R is given by

f̂NW (x) =

∑n
i=1 Kh(Xi1 − x)Yi1∑n

i=1 Kh(Xi1 − x)
.

To analyze the asymptotics of the estimator, we decompose f̂NW (x)
such that f̂NW (x) = f̂ mNW (x) + f̂ eNW (x), where

f̂ mNW (x) =

∑n
i=1 Kh(Xi1 − x)f (Xi1)∑n

i=1 Kh(Xi1 − x)
,

f̂ eNW (x) =

∑n
i=1 Kh(Xi1 − x)Ui1∑n

i=1 Kh(Xi1 − x)
.

Here, f̂ mNW (x) represents the conditional mean part of the estimator,
while f̂ eNW (x) represents the residual net of the conditional mean.
In the following theorem, we provide asymptotics for each term
separately.

Theorem 3.1. Under Assumption 2.1, we have

f̂ mNW (x) →p f (x),
1

√
T (r−s+2)/(r+2)

f̂ eNW (x) →d MN
(
0, �NW

)
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