Sequential lottery contests with multiple participants

Nava Kahana ${ }^{\text {a,b }}$, Doron Klunover ${ }^{\text {c,a,* }}$
${ }^{a}$ Department of Economics, Bar-Ilan University, 52900 Ramat-Gan, Israel
${ }^{\text {b }}$ IZA, Bonn, Germany
${ }^{\text {c }}$ Department of Economics, Ariel University, 40700 Ariel, Israel

H I G H L I G H T S

- We study a sequential lottery contest with multiple participants.
- We apply aggregative games techniques in a novel fashion.
- We show the existence of a unique subgame perfect equilibrium in pure strategies.

ARTICLE INFO

Article history:

Received 24 September 2017
Received in revised form 20 November 2017
Accepted 8 December 2017
Available online 18 December 2017

JEL classification:

C72
D43
L13
Keywords:
Aggregative games
Sequential contests
Subgame perfect equilibrium

Abstract

We apply aggregative games techniques in a novel fashion in the analysis of sequential lottery contests with n players to show that, there exists a unique subgame perfect equilibrium in pure strategies.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In an imperfectly discriminative contest, there is a probabilistic relation between players' investments and prize allocation. A lottery contest is a special yet commonly used imperfectly discriminative contest (Konrad, 2009).

The literature on imperfectly discriminative sequential contests has focused mainly on the two-player case (for example, see Dixit, 1987; Leininger, 1993; Morgan, 2003; Yildirim, 2005; Serena, 2017). Glazer and Hassin (2000) provided an analytical Stackelberg solution for a sequential lottery contest with three players; however they found it to be exceedingly difficult to obtain an analytic Stackelberg solution for more than three players.

We study analytically a sequential lottery contest (in which players choose their expenditures one by one and a lottery is held

[^0]after the last player has made her choice of expenditure) with n players. This is a dynamic aggregative game. The "replacement correspondence technique associated with aggregative games is applied here in a novel fashion in order to show that in a sequential lottery contest with n players there exists a unique Subgame Perfect Equilibrium (henceforth: SPE) in pure strategies . ${ }^{1}$

2. The model

There are n identical risk neutral players in a sequential lottery contest in which the order of moves is exogenous. Each player $i \in N$ observing the effort made by previous players and anticipating the future expenditures of subsequent players, invests $x_{i} \geq 0$. A lottery with one winner and one prize with a common value $v=1$ is held

[^1]after all the players have made their choice. ${ }^{2}$ The probability of player $i \in N$ winning the prize is determined by the lottery contest success function:

$p_{i}=\left\{\begin{array}{ll}\frac{1}{n}, & \text { if } x_{1}=x_{2} \cdots=x_{n}=0 \\ \frac{x_{i}}{\sum_{j=1}^{n} x_{j}}, & \text { otherwise }\end{array}\right\}$.
Define: $\forall i \neq 0 \quad X_{i}=\sum_{j=1}^{i} x_{j}, X_{0}=0, X_{n}=X$ and $E \pi_{i}$ as player i^{\prime} s expected net payoff.

Each player i solves the following problem:

$$
\begin{align*}
& \max _{x_{i}} E \pi_{i}\left(x_{i} ; X_{i-1}\right), \quad \text { where } E \pi_{i}\left(x_{i} ; X_{i-1}\right) \\
& \quad=\frac{x_{i}}{X_{i-1}+x_{i}+\sum_{j=i+1}^{n} x_{j}}-x_{i} \tag{2}
\end{align*}
$$

In this game, player i 's pure strategy is $x_{i}:[0, \infty) \rightarrow[0, \infty)$ for $i=2, \ldots, n$, and given that investments are not made prior to the first play, the first player's strategy set is $x_{1} \in[0, \infty)$. Thus, the sum of the players' strategies is $X \in[0, \infty)$ and an SPE in pure strategies is a strategy profile $\underline{x}=\left(x_{1}, \ldots, x_{n}\right)$ such that $x_{i} \in$ $\arg \max _{x_{i}} E \pi_{i}\left(x_{i} ; X_{i-1}\right)$, where player i anticipates $x_{i+1}, \ldots, x_{n} \forall i \in$ $N .{ }^{3}$

3. The alternative problem

3.1. The setting

In what follows, we define, by recursion, a function $X_{i}(X)$. It is used to present an alternative problem which is shown to be equivalent to the original problem.

The function $X_{i}(X)$ is defined as follows:

$$
\begin{equation*}
X_{n}(X)=X \tag{3}
\end{equation*}
$$

and
$X_{i-1}(X)=X_{i}(X)+X_{i}^{\prime}\left(X^{2}-X\right), \quad$ where
$X_{i}^{\prime}=\frac{d X_{i}(X)}{d X} \quad \forall i \in\{2, \ldots, n\}$.
Lemma 1 specifies the structure of the function $X_{i}(X)$.
Lemma 1. $X_{i}(X)=\sum_{j=1}^{n-i+1} a_{j i} X^{j} \forall i=1, \ldots, n$, where $a_{j i} \neq 0 \forall 2 \leq$ $j \leq n$.

The proofs of the lemmas and the propositions appear in the Appendix.

For a given $X_{i-1}, \quad E \tilde{\pi}_{i}\left(X ; X_{i-1}\right)$ is defined as:
$E \tilde{\pi}_{i}\left(X ; X_{i-1}\right)=\frac{X_{i}(X)-X_{i-1}}{X}-\left(X_{i}(X)-X_{i-1}\right) .{ }^{4}$
The FOC for maximization of $E \tilde{\pi}_{i}$ with respect to X is:
$\frac{\partial E \tilde{\pi}_{i}}{\partial X}=\frac{X_{i}^{\prime} X+X_{i-1}-X_{i}(X)}{X^{2}}-X_{i}^{\prime}=0 \forall i$.
Notice that by rearranging the terms in (6) we obtain (4)
Lemma 2 specifies the structure of the function $E \tilde{\pi}_{i}(X, 0)$.

[^2]Lemma 2. $E \tilde{\pi}_{i}(X ; 0)$ has the following structure:
(i) E $\tilde{\pi}_{i}(X ; 0)$ is a polynomial of degree $n-i+1$ with $n-i+1$ roots over the interval $[0,1]$ and $n-i$ extrema in between them, which are the roots of $E \tilde{\pi}_{i-1}(X ; 0)$.
(ii) Denote by $X_{i s}^{0}$ and $X_{i l}^{0}$ the smallest and largest roots, respectively, of $E \tilde{\pi}_{i}(X ; 0)$ over the interval $(0,1)$. Then, if $n-i$ is odd, E $\tilde{\pi}_{i}(X ; 0)$ achieves a maximum over the interval $\left(0, X_{i s}^{0}\right)$ as well as over the interval $\left(X_{i l}^{0}, 1\right)$. If $n-i$ is positive and even, then $E \tilde{\pi}_{i}(X ; 0)$ achieves a minimum over the interval $\left(0, X_{i s}^{0}\right)$ and a maximum over the interval $\left(X_{i l}^{o}, 1\right)$.

For example, $E \tilde{\pi}_{n-1}(X ; 0)=X-X^{2}$ has two roots: $X=0$ and $X=1$ and a unique maximum at $X=0.5$, where $E \tilde{\pi}_{n-2}(X ; 0)=$ $-2 X^{3}+3 X^{2}-X$ has three roots: $X=0, X=0.5$ and $X=1$, and two extrema: a minimum over the interval $(0,0.5)$ and a maximum over the interval $(0.5,1)$ and so on. The structure of $E \tilde{\pi}_{i}(X ; 0)$ for $n-4 \leq i \leq n-1$ is illustrated in Fig. 1.
$E \tilde{\pi}_{i}(X ; 0)$

Fig. 1. The functions $E \tilde{\pi}_{i}(X ; 0)$ over the interval $[0,1]$ for $i=n-4, \ldots, n-1$.

3.2. The solution of the alternative problem

For a given $X_{i-1}<1$, consider the following alternative problem.

$$
\begin{array}{ll}
\max _{X} & E \tilde{\pi}_{i}\left(X ; X_{i-1}\right) \\
\text { s.t. } & X_{i}(X)-X_{i-1} \geq 0, \\
& X_{j}(X)-X_{j-1}(X) \geq 0 \forall j>i \tag{7}\\
& \text { and } \\
& X \leq 1 .
\end{array}
$$

Proposition 1 utilizes both Lemma 1 and Lemma 2 to show that the alternative problem has a unique solution.

Proposition 1. Problem (7) has a unique solution for all i, and it is an interior solution. Let X^{*} be the solution of (7) for $i=1$. Then given that $X_{i-1}=X_{i-1}\left(X^{*}\right), X^{*}$ is also the solution of (7) for all $i>1$.

Notice that, the solution of (7) for $n=5$ and $i=1$, which is the unique maximum of $E \tilde{\pi}_{1}(X ; 0)$ over the interval $\left(X_{11}^{o}, 1\right)$, is illustrated in Fig. 1.

4. The solution of the original problem

We first present Lemma 3 since it is needed to prove our main result which follows it.

Lemma 3. An SPE in pure strategies of the sequential lottery contest with n players satisfies: (i) $x_{i}>0 \forall i \in N$ and (ii) $X=\sum_{j=1}^{n} x_{j} \in$ (0,1).

Proposition 2 demonstrates the link between the original and the alternative problem.

https://daneshyari.com/en/article/7349448

Download Persian Version:
https://daneshyari.com/article/7349448

Daneshyari.com

[^0]: * Corresponding author at: Department of Economics, Ariel University, 40700 Ariel, Israel.

 E-mail address: doronkl@ariel.ac.il (D. Klunover).
 https://doi.org/10.1016/j.econlet.2017.12.010
 0165-1765/© 2017 Elsevier B.V. All rights reserved.

[^1]: 1 Cornes and Hartley $(2003,2005)$ utilize the notion of replacement correspondence to study simultaneous contests. For definitions of aggregative games and replacement correspondence, see Cornes and Hartley (2012).

[^2]: 2 The assumption that $v=1$ is made without loss of generality.
 3 Below we show that in each subgame of the original game there exists a unique SPE in pure strategies and thus each player can accurately anticipate the efforts made by subsequent players.
 4 Note that by definition, $X \geq X_{i-1}$.

