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h i g h l i g h t s

• We develop a robust maximum entropy test for the normality of GARCH models.
• As a robust estimator, we employ the minimum density power divergence estimator.
• We derive the limiting null distribution of the test statistics.
• A bootstrap method is also discussed.
• Our test overcomes size distortions remarkably well in the presence of outliers.
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a b s t r a c t

The maximum entropy test, as designed for examining goodness-of-fit with a non-robust estimator
such as the maximum likelihood estimator, can suffer from severe size distortions when the data are
contaminated by outliers. The objective of this study is to develop a robust maximum entropy test for
the normality of GARCH models. We construct the test statistic based on the minimum density power
divergence estimator and verify its limiting null distribution. A bootstrap method is also discussed, and
its performance is evaluated through simulations. According to the simulation results, the proposed test
can successfully achieve reasonable sizes in the presence of outliers.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

For a probability density function f , the Boltzmann–Shannon
entropy is defined by

H(f ) = −

∫
∞

−∞

f (x) log f (x)dx. (1)

Forte and Hughes (1988) proposed a discrete analogue of (1) of the
form −

∑
pi log(pi/(xi − xi−1)), where pi = P(xi−1 < X < xi) =∫ xi

xi−1
f (x)dx, i = 1, . . . , n− 1 and a = x0 < · · · < xn = b. Based on

this quantity, Lee et al. (2011) proposed amaximumentropy test in
independent and identically distributed (iid) random variables and
demonstrated that the test outperforms other existing goodness-
of-fit (gof) tests.
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The gof tests play an important role in matching given data-
sets with the best fitted ones among the candidate distribution
families. In time series analysis, testing for normality is a crucial
issue. In particular, the normality test for GARCH innovations is
important because the Gaussian quasi-maximum likelihood es-
timator (QMLE) of GARCH parameters, which is a widely used
estimation technique for GARCH models, becomes less efficient if
the innovations are non-Gaussian. Further, normality tests are vital
in many applications, such as calculating the conditional value-at-
risk. As the normality of innovations does not necessarily imply
that of theGARCHmodel itself, the normality test should be applied
to the innovations. Recently, Lee et al. (2015) developed a maxi-
mum entropy gof test for GARCH(1,1) innovations based on QMLE.
However, as is widely recognized in the literature, the maximum
likelihood method is unduly influenced by outliers. Hence, the
maximum entropy normality test for GARCH innovations based on
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QMLE can suffer from severe size distortions when the data are
contaminated by outliers. To cope with such a defect, we propose
a maximum entropy test based on a robust estimator instead of
the QMLE, and compare the performance of the proposed test with
that of the QMLE-based entropy test. For this task, we employ the
minimum density power divergence estimator (MDPDE) proposed
by Basu et al. (1998, BHHJ hereafter) as a robust estimator. BHHJ
developed an estimation procedure that is robust against outliers
by minimizing the divergence between two density functions,
which is called the density power divergence. Compared with
previous divergence-based estimation methods, BHHJ’s approach
has the advantage that it does not require any smoothing methods
to estimate the true density function of the data. Owing to this
advantage, the MDPDE has been applied to various models: for
example, Lee and Song (2009) and Kim and Lee (2013) recently
studied theMDPDE forGARCHmodels and the covariancematrix of
multivariate times series. BHHJ showed that the MDPDE possesses
strong robust properties with little loss in asymptotic efficiency
relative to the MLE. Thus, the MDPDE can be regarded as a good
alternative to the MLE in terms of both robustness and asymptotic
efficiency.

The remainder of this paper is organized as follows. In Section 2,
we construct the MDPDE for GARCH(1,1) parameters. In Section 3,
we introduce the test statistic of the maximum entropy test and
its limiting null distribution in iid samples, and apply this test to
GARCH(1,1) models with the MDPDE. In Section 4, we conduct a
simulation study to evaluate the capabilities of the proposed test.

2. MDPDE for GARCHmodels

For two given density functions f and g , their density power
divergence is defined by

dλ(g, f )

:=

⎧⎪⎨⎪⎩
∫

{f 1+λ(y) − (1 +
1
λ
)g(y)f λ(y) +

1
λ
g1+λ(y)}dy, λ > 0,∫

g(y){log g(y) − log f (y)}dy, λ = 0.

Then, for a parametric family {Fθ }, indexed by some unknown pa-
rameter θ ∈ Θ and possessing a density of {fθ }, and a distributionG
with density g , the minimum density power divergence functional
Tλ(G) is defined by

dλ(g, fTλ(G)) = min
θ∈Θ

dλ(g, fθ ).

In particular, if G = Fθ0 ∈ {Fθ }, Tλ(G) = θ0. Based on this, given a
random sample X1, . . . , Xn with unknown density g , the MDPDE is
defined as

θ̂λ,n = argmin
θ∈Θ

Hλ,n(θ ),

where Hλ,n(θ ) =
1
n

∑n
t=1Vλ(θ; Xt ) and

Vλ(θ; Xt ) =

⎧⎨⎩
∫

f 1+λ
θ (y)dy −

(
1 +

1
λ

)
f λ
θ (Xt ), λ > 0,

− log fθ (Xt ), λ = 0.

When λ = 0 and 1, the MDPDE is the same as the MLE and L2-
distance estimator, respectively. BHHJ showed that θ̂λ,n is consis-
tent for Tλ(G) and asymptotically normal. They also demonstrated
that the estimator is robust against outliers, but still highly efficient
when the true distribution belongs to the parametric family {Fθ }

and λ is close to 0. To apply the above procedure to GARCHmodels,
we must define the conditional version of the MDPDE. As the true
conditional distribution of the time series Xt given Ft−1, where
Ft−1 is a σ -field generated by {Xt−1, Xt−2, . . .}, is usually unknown
in practice, we consider a candidate parametric conditional dis-
tribution family {fθ (·|Ft−1)} indexed by the parameter θ to play

the role of the true conditional distribution. Then, the MDPDE is
defined by

θ̂λ,n = argmin
θ∈Θ

Hλ,n(θ ),

where Hλ,n(θ ) =
1
n

∑n
t=1Vλ(θ;Ft−1, Xt ) and

Vλ(θ;Ft−1, Xt )

=

⎧⎨⎩
∫

f 1+λ
θ (y|Ft−1)dy −

(
1 +

1
λ

)
f λ
θ (Xt |Ft−1), λ > 0,

− log fθ (Xt |Ft−1), λ = 0.
(2)

Now, suppose thatX1, . . . , Xn are observed from theGARCH(1,1)
model:

Xt = σt (θ )ϵt ,

σ 2
t (θ ) = ω + αX2

t−1 + βσ 2
t−1(θ ), (3)

where ϵt are iid randomvariableswith zeromean andunit variance
and θ = (ω, α, β)′ ∈ Θ ⊂ (0, ∞) × [0, ∞)2 with α + β <
1. Let θ0 denote the true value of θ . As ϵt ∼ N(0, 1) implies
Xt |Ft−1 ∼ N(0, σ 2

t (θ0)) and the purpose of this study is to develop
a robust normality test for GARCH innovations that avoids size dis-
tortions in the presence of outliers, we employ the normal family
{N(0, σ 2

t (θ )), θ ∈ Θ} as the parametric family {fθ (·|Ft−1)} in (2).
Then, from (2), we can define the MDPDE for GARCH parameters
θ̂λ,n = (ω̂λ,n, α̂λ,n, β̂λ,n)′ as

θ̂λ,n = argmin
θ∈Θ

H̃λ,n(θ ),

where

H̃λ,n(θ )

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
n

n∑
t=1

(
1√
σ̃ 2
t

)λ {
1

√
1 + λ

−

(
1 +

1
λ

)
exp

(
−

λX2
t

2σ̃ 2
t

)}
,

λ > 0,
1
n

n∑
t=1

(
X2
t

σ̃ 2
t

+ log σ̃ 2
t

)
, λ = 0,

and σ̃ 2
t are defined recursively by σ̃ 2

t = σ̃ 2
t (θ ) = ω+αX2

t−1+βσ̃ 2
t−1

with initial values X2
0 and σ̃ 2

0 . Following the suggestion of Francq
and Zakoïan (2004), we choose X2

0 = σ̃ 2
0 = X2

1 in this study.

3. Maximum entropy test

3.1. Maximum entropy test for an iid sample

In this section, we briefly review the maximum entropy test
for iid random variables. Let Yi, i = 1, 2, . . . , n be a random
sample from a distribution with an unknown distribution function
G. Suppose that we wish to test the hypotheses:

H0 : G = G0 vs. H1 : G ̸= G0. (4)

To deal with this problem, Lee et al. (2011) suggested the following
generalization of the entropy defined by Forte and Hughes (1988):

Sw(G) = −

m∑
i=1

wi(G(si) − G(si−1)) log
(
G(si) − G(si−1)

si − si−1

)
,

where the w are appropriate weights with 0 ≤ wi ≤ 1 and∑m
i=1wi = 1, m is the number of disjoint intervals for partitioning

the data range, and −∞ < a ≤ s0 ≤ · · · ≤ sm ≤ b < ∞ are
preassigned partition points. As Sw(G0) = 0 when G0 is uniformly
distributed in [0, 1], the gof test can be reduced to a uniform test
based on the probability integral transform G0(Yi), denoted by Ui.
The role of weights is important for the test. Lee et al. (2011)
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