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Abstract

Wederive the limit theory of the Gaussian QMLE in the non-stationary GARCH(1,1)
modelwhen the squared innovationprocess lies in thedomain of attractionof a stable
law. Analogously to the stationary case, when the stability parameter lies in (1, 2], we
find regularly varying rates and stable limits for the QMLE of the ARCH and GARCH
parameters.
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1 Introduction

We derive the limit theory of the Gaussian QMLE in the non-stationary GARCH(1,1) model
when the squared innovation process lies in the domain of attraction (DoA) of a 𝑝-stable
law for 𝑝 ∈ (1, 2]. Our interest stems from the empirical fact that distributions of financial
asset returns exhibit fat tail behavior. This renders plausible the consideration of heavy-
tailed distributions for the innovation process of GARCH-type models in financial applica-
tions. In the stationary versions of such cases,

√𝑛-consistency and possibly asymptotic
normality can break down for the Gaussian QMLE (see for example Hall and Yao (2003);
MikoschandStraumann (2006); Arvanitis andLouka (2017)). Hence thequestionofwhether
this holds under non-stationarity arises naturally, and can be important for the determina-
tion of the asymptotic validity of inferential procedures based on the QMLE.

For the non-stationaryGARCH(1,1), when the innovations fourthmoments exist (hence
𝑝 = 2), Jensen and Rahbek (2004a) and Francq and Zakoïan (2012) establish standard limit
theories for the ARCH and GARCH parameters QMLE. In the non-stationary ARCH(1) case
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