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• This paper tests for structural break in factor-augmented regression models.
• We extend the classical structural break tests to this case by the two-step tests.
• Monte Carlo simulations show that the tests have good finite-sample performance.
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a b s t r a c t

This paper considers testing for structural break of factor-augmented regression models with unknown
change point. In this case, the classical structural break tests proposed by Andrews (1993) and Andrews
and Ploberger (1994) are infeasible due to the presence of unobservable factors. This paper develops
the feasible two-step tests based on their structural break tests. We prove that the asymptotic null
distributions of the proposed two-step tests remain to be the same as those of their infeasible tests. The
Monte Carlo simulations confirm the theoretical results and show that the two-step tests performwell in
finite sample.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Empirical researchers have found that variations in a large num-
ber of macroeconomic time series can be well explained by a few
unobservable factors. Considering this, Stock and Watson (2002)
and Bai and Ng (2006) incorporate the factors into an otherwise
standard regressionmodel and then propose factor-augmented re-
gressionmodel. Themodel assumes that the regression coefficients
are time invariant. However, there is strong evidence that a subset
of macroeconomic time series has undergone structural breaks,
which may imply breaks in coefficients (see Stock and Watson,
1996).
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It is well known that failure to take structural breaks into
account may lead to invalid inference and incorrect policy im-
plications, hence it is important to test for structural breaks. Re-
cently the literature investigates tests for structural breaks in the
factor loadings, including, Breitung and Eickmeier (2011), Baltagi
et al. (2017), Bates et al. (2013), Chen et al. (2014), Cheng et al.
(2016), and Han and Inoue (2015), to name a few. Baltagi et al.
(2016), Li et al. (2016) and Wang et al. (2015) focus on the esti-
mation of factor-augmented regressionmodels given the presence
of structural breaks. The purpose of this paper is to test for one-
time break of the coefficients of observable regressors in factor-
augmented regressions. To the best of our knowledge, there is
one test for structural instability of factor augmented regression
models proposed by Corradi and Swanson (2014) (henceforth CS),
who develop a test based on the difference between a full sample
and a rolling window estimator of the covariance of the explained
variable and the estimated factors. Considering of the finite sample
performance, they recommend to inference using bootstrap critical
values obtained from block bootstrap (henceforth CSB). The imple-
mentation of their test is simple but their test is inconsistent under
certain cases.
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In standard regression models, the classical tests for structural
change with unknown change point are typically attributed to
Andrews (1993) and Andrews and Ploberger (1994). They propose
the supreme Wald test statistics (supW), the mean Wald statistics
(meanW) and the exponentialWald statistics (expW) respectively.
However, for factor-augmented regressions, the above three tests
are not feasible due to the presence of unobservable factors. This
paper extends the above tests to the case of factor-augmented
regression models by a two-step procedure: first, we estimate the
factors by the principal components analysis (PCA); second, we
treat the estimated factors as the underlying factors and use supW,
meanW and expW to test for structural break. We will show that
the above tests have the same asymptotic null distributions as
if the factors were observed, thus one can conduct the proposed
tests using the critical values from Andrews (1993) and Andrews
and Ploberger (1994). Given the wide applicabilities of the above
infeasible tests and factor-augmented regression models, the fea-
sible tests proposed in this paper can be of considerable practical
importance.

The rest of the paper is organized as follows. In Section 2,
we present the basic notations and introduce the test statistics.
Section 3 establishes the asymptotic properties of the suggested
test statistics under thenull hypothesis. In Section4,we investigate
the finite sample performance of the tests. Section 5 concludes.

2. Notations and test statistics

Consider the following factor-augmented regression model
with a single structural break:

yt = x′

t1(1 ≤ t ≤ π0T )β1 + x′

t1(π0T < t ≤ T )β2 + f ′

t γ + vt , (1)

where xt is a vector of p observable regressors which can con-
tain intercept and vt is a real-valued idiosyncratic error for t =

1, 2, . . . , T . 1(·) is an indicator function, π0 ∈ (0, 1) is the potential
break fraction. For simplicity, πT denotes ⌊πT⌋, where ⌊·⌋ is the
integer part operator. The unobservable regressors ft is an r-vector
of factors which can be arbitrarily correlated to xt . Factors repre-
sent diffusion indices thatmeasure the effects of systematic shocks
or risks. Then we assume that factors come from the approximate
factor models of wit with factor loading λi as follows

wit = λ′

ift + eit , i = 1, 2, . . . ,N. (2)

Withmodel (1) and (2),we intend to test the following hypotheses:

H0 : β1 = β2, (3)

versus

HA : β1 ̸= β2. (4)

To propose the test statistics, we need to introduce somematrix
notations. Stacking the observations of yt , vt , wit and eit over t ,
we have four T × 1 vectors y, v, wi and ei. For the factor model,
define W = (w1, . . . , wN ), F = (f1, . . . , fT )′, Λ = (λ1, . . . , λN )′
and e = (e1, . . . , eN ). For the ease of exposition of structural break,
let X1 = (x1, . . . , xπT , 0, . . . , 0)′, X2 = (0, . . . , 0, xπT+1, . . . , xT )′.
If we replace π by π0 in X1 and X2, we have X0

1 and X0
2 . Then we

define Z = (X1, X2, F ) and Z0
= (X0

1 , X0
2 , F ). With these notations,

the model can be reformulated into a matrix form,

y = X0
1β1 + X0

2β2 + Fγ + v = Z0δ + v, W = FΛ′
+ e

where δ = (β ′

1, β
′

2, γ
′)′. If ft were observed, we can test the null

hypothesis (3) as in Andrews (1993) and Andrews and Ploberger
(1994) by the supW, meanW and expW test statistics. We denote
them as supW(F ), expW(F ) and meanW(F ), respectively.

However, the factors ft are unobservable, thus the above tests
are infeasible. Following Wang et al. (2015), we use a two-step

procedure to estimate themodel: In the first step, we use principal
component method to estimate F by F̂ = (f̂1, . . . , f̂T )′, which is
the T × r matrix consisting of r eigenvectors (multiplied by

√
T )

associated with the r largest eigenvalues of the matrix WW ′/(TN)
in decreasing order. Next, treating the estimated factors F̂ as the
underlying factors F , we regress y on Ẑ = (X1, X2, F̂ ) and then
get the ordinary least squares estimator (OLS) of δ, denoted by
δ̂ = (β̂ ′

1, β̂
′

2, γ̂
′). Let ẑt be the transpose of the tth rowof Ẑ . Then the

corresponding residual will be v̂t = yt − δ̂ẑt . Following Andrews
(1993), the Wald test statistic is then defined as follows

W(π, F̂ ) = T δ̂′R′

(
R
(
T−1Ẑ ′Ẑ

)−1
Ω̂T

(
T−1Ẑ ′Ẑ

)−1
R′

)−1

Rδ̂ (5)

where R = (Ip, −Ip, 0p×r ), Ω̂T is the heteroscedasticity and auto-
correlation consistent (HAC) estimate of the long run variance of
{ẑt v̂t}, which will be defined more precisely in the next section.
Correspondingly, the supW, meanW and expW test statistics can
be constructed as:

supW(F̂ ) = supπ∈ΠW(π, F̂ ),

meanW(F̂ ) = ln
(

1
π2 − π1

∫ π2

π1

exp
(
W(π, F̂ )/2

)
dπ
)

,

expW(F̂ ) =
1

π2 − π1

∫ π2

π1

W(π, F̂ )dπ,

where Π = [π1, π2] is any set whose closure lies in (0, 1).
Note that using true factors F instead of estimated factors

F̂ , we follow the approach of construction of the Wald test
statistics Eq. (5), we can obtain the infeasible Wald statistic
W(π, F ). Then supW(F ) = supπ∈ΠW (π, F ), meanW(F ) =

ln
(

1
π2−π1

∫ π2
π1

exp
(W (π,F )

2

)
dπ
)
and expW(F ) =

1
π2−π1

∫ π2
π1

W (π, F )
dπ .

3. Assumptions and inference theory

To analyze the asymptotic properties of the tests, we make the
following assumptions. Hereafter, ∥·∥ denotes the Euclidean norm
of a vector or matrix, H⇒ denotes weak convergence of stochastic
processes, C is a generic positive constant large enough.

Assumption A (Factors). E∥ft∥4
≤ C , 1

T

∑T
t=1ft f

′
t

p
→ Σf as T → ∞

for some non-random positive matrix Σf .

Assumption B (Loadings). ∥λi∥ ≤ C , 1
N Λ′Λ

p
→ ΣΛ > 0.

Assumption C (Time and Cross-Section Dependence with Het-
eroscedasticity). Let E(eisejt ) = σij,st , we assume that

1. E(eit ) = 0 and E|eit |8 ≤ C .
2. 1

NT

∑N
i=1
∑N

i=j
∑T

s=1
∑T

t=1|σij,st | ≤ C .
There exist |σij,tt | ≤ σ̄ij for all t such that 1

N

∑N
i=1
∑N

j=1σ̄ij ≤

C .
There exists γst = E( 1

N

∑N
i=1σii,st ) such that

∑T
s=1|γst | ≤

C .
3. For every (t, s), E

( 1
√
N

∑N
i=1[eiseit − E(eiseit )]

)4
≤ C .

Assumption D. There exists an C < ∞ such that

1. E
(

1
N

∑N
i=1∥

1
√
T

∑T
t=1fteit∥

2
)

≤ C .

2. E∥
1

√
NT

∑T
s=1
∑N

i=1fs[eiseit − E(eiseit )]∥2
≤ C .

3. E∥
1

√
NT

∑T
t=1
∑N

i=1ftλ
′

ieit∥
2

≤ C .

4. For each t , E
 1

√
N

∑N
i=1λieit

4 ≤ C .
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