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a b s t r a c t

The proposed algorithm is designed to enhance the line-detection stability in laser-stripe sensors. De-
spite their many features and capabilities, these sensors become unstable when measuring in dark or
strongly-reflective environments. Ambiguous points within a camera image can appear on dark surfaces
and be confused with noise when the laser-reflection intensity approaches noise level. Similar problems
arise when strong reflections within the sensor image have intensities comparable to that of the laser. In
these circumstances, it is difficult to determine the most probable point for the laser line. Hence, the
proposed algorithm introduces a maximum a posteriori estimator, based on geometric Brownian motion,
to provide a range estimate for the expected location of the reflected laser line.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

This paper introduces a novel method to enhance line detection
in laser-stripe sensors when circumstances are ambiguous or un-
certain. Laser-stripe sensors are capable of measuring a vertical
section of a surface related to an internal-sensor coordinate sys-
tem using a laser-line projection observed by an internal camera.
Much research has been undertaken on laser-stripe sensors, with
one of the first publications introducing the measurement tech-
nique in the mid-eighties [3]. Currently, applications for such
sensors are ubiquitous, covering engineering fields such as in-
dustrial automation, geodetic measurements, computer vision (3D
modelling), and robot guidance. When laser-stripe sensors are
properly calibrated, i.e. the extrinsic parameter between camera
and laser and the intrinsic parameter of the camera are well
known, it is possible to transform pixel information of the laser-
line reflection in the camera into real-world measurements within
the sensor-coordinate space [13]. This is possible given that for
every position within the camera image, there exists a unique ray
intersecting the laser plane. This intersection point represents the
real-world coordinate, which is computable if the camera

calibration is known. To transform a coordinate from the image
space to the sensor-coordinate space, a linear operation is applied
and represented by a homography matrix [5,9]. However, since the
images are slightly distorted due to the lens system, it is necessary
to model lens distortion in order to first untwist the images.

Various calibration methods for laser-stripe sensors have been
published [2,12].

Fig. 1 depicts a laser-stripe sensor observing a calibration body
on the left-hand side and the associated measurement image on
the right-hand side. Since the laser projection is observed by a
camera, one fundamental task of such sensors is extraction of pixel
coordinates from the laser-line reflection within the camera image.
Unfortunately, limited research exists concerning line-detection
algorithms. Currently, most commercial devices continue to use
standard techniques introduced in the early nineties [6]. Small
changes have been proposed, e.g. alternative methods for ex-
tracting the centre line of the laser [14]. Among the few works
concerning image noise, Quing-Yang et al., introduced a method to
remove environmental noise by subtracting two images [8]. There
remains a lack of methods for enhancing the stability of laser-line
detection on dark or reflective surfaces involving dynamic noise
caused by the laser. Although strong laser reflections leave bright,
easily extractable signals within the camera image, laser-line de-
tection becomes challenging when additional reflections are visi-
ble within the image or, in the case of dark surfaces, if the
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reflection intensity approaches noise level. Given the growing in-
dustrial popularity of laser-stripe sensors, applications involving
complicated situations are becoming more common. Even in en-
vironments having strong reflective properties, the algorithm
presented here can support line recognition in case of ambiguous
situations involving contour gaps, jumps, or structural shadows. In
such circumstances, an efficient method is required to determine
the most probable candidate or decide whether a candidate exists.
One common technique defines a threshold limiting the range for
expected valid successors. If there are multiple candidates within
the threshold, one strategy might be to consistently choose the
neighbour candidate located closest to the latest laser reflection
point. Unfortunately there is no equidistant spacing between
samples and the closest point is not always the correct choice. In
fact, the spacing between measured samples can vary due to the
angular relation between the sensor and the object surface Fig. 2.
One can expect the highest density of sample spots to exist where
the sensor directly faces the object surface and lower sample
density in regions where the angle between the surface and the
sensor offsets from 90°. In order to address these situations, it is
necessary to consider drift properties within the model equations.
Here, we propose an algorithm based on geometric Brownian
motion (GBM), an extension of Brownian motion [10] used in
modelling asset-price behaviour in mathematical finance [10].
Given that sample distances share some similar properties with
asset-price behaviour, it is possible to utilize GBM as a basis for
sample-distance estimation. However, since line-detection logic is
an integral part of the real-time software controlling the sensor
hardware,1 execution speed offers an additional challenge. This
algorithm is intended to run on embedded systems in real-time
environments, making avoidance of complex calculations or
iterative root-finding algorithms a major requirement.

An additional application for the proposed algorithm involves
scan segmentation. Given that points of discontinuities are de-
tected automatically, the algorithm can be applied to determine
separate segments within a scene. This can be useful for filtering,
since points of discontinuities usually constitute critical spots, or
for object detection or separation, since one segment usually re-
presents one object within an observed scene.

2. Working principle

The algorithm is arranged into two logical steps, where the first
step determines whether or not a measurement is within the

estimated range for a successor. This step is not limited to the one
successor, but can determine parameters for an arbitrary number
of successors. Therefore, step one verifies whether only a few
successors exceed estimated expected range by being classic out-
liers or if all upcoming successors are outside the expected range.
In the event that there are many candidates for the next successor,
the algorithm chooses the point with the highest probability,
which is often the measure closest to the predicted mean. Points
outside the limits defined by the predicted variance will be re-
jected as outliers.

The second step constitutes the update step, wherein a max-
imum a posteriori (MAP)-estimator is utilized to predict the most
probable measurement state, s̄i. The prediction of s̄i is based on its
actual measurement, si, and its previous state, s0. Therefore, s̄i

serves as a recursive input for subsequent prediction steps.
To determine a segmentation point, the algorithm determines if

a well-defined number of measurements violates the expected
sample distance. If so, it is probable that these points are not
outliers, but rather define a new segment of contour points. In this
case, the algorithm needs to be reinitialized with the first contour
point of the new segment. In cases involving outliers, these points
will be removed from the dataset. For model determination, it is
necessary to assess the nature of the distances between samples.
Given the simplest case, where the distances are constant and
with normally-distributed noise superimposed, one can establish
an initial model as:
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where (1) si denotes spacing (sample distance)2 at the ith mea-
surement sample. The parameter, s̄i, denotes the expected spacing,
predicted based on previous measures. Finally, s2 represents the
variance between previous measures and their predictions. Thus,
this initial model (1) represents a normal distribution, wherein
both parameters represent the measurement expectation, s̄i, and
the variance, s2, and are unknown and considered random vari-
ables. Therefore, the primary goal is to derive a model for these
two parameters.

Starting with the spacing expectation, s̄i, it is possible to model
it as its own random variable. Then, given a probability density
function for s̄i relative to the given data, si, it is possible to solve for
s̄i, such that (¯ | ) →¯p s s maxs i i . Therefore, in order to solve for the
most probable s̄i, the first step is to derive (¯ | )^p s ss i ii

.

Fig. 1. Laser-stripe Sensor. The bright red region indicates the laser curtain and the
dark red line is the empirical path of a single beam. (For interpretation of the re-
ferences to color in this figure caption, the reader is referred to the web version of
this paper.)

Fig. 2. A typical car-body scan showing differences in sample densities.

1 Usually an embedded system with only limited resources.

2 We use s (spacing) for the spacing between two samples instead of d, since d
might be confused with the differential operator d

dx
later on.
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