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a b s t r a c t

Digital holography (DH) is a 3D imaging technique with a theoretical axial accuracy of around 1–2 nm.
However, in practice, the axial error is generally quoted as tens of nanometers. Previous studies on
sources of axial error mainly focused on the phase error introduced by lens. However, it was later shown
that other factors such as the limited CCD aperture size also contribute to axial error. Based on this study,
further investigation approaches to suppress the axial error caused by the limited CCD aperture size is
discussed in this paper. Use of a window function to modify the shape of the hologram aperture after the
recording process is proposed to reduce the axial error. The mechanism of how this window function
reduces axial/phase error is analyzed. Specific features of this window function related to the axial error,
namely the side lobe energy to main lobe energy ratio (SMER), is postulated. Both simulation and ex-
periment are performed to validate that the selection of an appropriate window function helps to reduce
the axial error of digital holography and SMER is an effective indicator in selection of an appropriate
window function.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Digital holography (DH) [1–6], compared to conventional ho-
lography, has many advantages including the access to quantita-
tive amplitude and phase information. The quantitative phase in-
formation contains depth information of the object and thus al-
lows 3D imaging of the object. DH has been widely applied in 3D
microscopic measurements in life and material sciences [7–14].

One of the advantages of DH over other 3D measurement and
imaging techniques is its excellent theoretical axial measurement
accuracy of better than 1 nm limited by the quantization effect of
CCD pixel [15]. However, in practice, the axial error is generally of
tens of nanometers, much higher than the theoretical value [16–
20] . This implies there are other factors limiting the axial accuracy
of DH. Therefore it is necessary to identify other axial error sources
and investigate the corresponding approaches to reduce these
errors.

The axial error of DH system have been studied earlier [21–26].
However, these studies mainly focused on the phase error in-
troduced by lens, such as phase aberrations. Recently, it was

reported that CCD aperture size is also an important contributor to
axial error [27,28]. Larger CCD size results in smaller axial error.
Following from these researches, further axial error reduction
approaches are proposed and demonstrated in this paper.

Increasing the CCD size and hence the hologram size is not a
practical solution from both set-up and speed of measurement
aspects. However, it is possible to modify the aperture shape of the
digital hologram by applying a window function to the recorded
digital hologram. Window functions had been applied to DH for
diffraction suppression [29,30], in order to improve the lateral
resolution of DH image. However, their impacts on the phase
image and the associated axial measurement error have not been
studied. In this work, it is proposed and demonstrated that the
axial error can be successfully suppressed by applying appropriate
window functions. It is postulated that a specific feature, the side
lobe energy to main lobe energy ratio (SMER), is directly related to
the axial error. By applying a window function with an appropriate
SMER value, the axial error is effectively reduced as demonstrated
through simulation and experiment. The results verify the effec-
tiveness of window functions in the axial error reduction and the
effectiveness of SMER indicator in the selection of appropriate
window functions for such purpose.

This paper is organized as follows: Section 2 introduces the
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theory model of the application of window functions to hologram.
In Section 3, simulations of the application of window functions
are performed. The impacts of the application on the axial error
are analyzed. In Section 4, experiments are performed and the
experimental results are discussed. Final conclusion is given in
Section 5.

2. Theoretical model

In this section, we discuss the theoretical basis of the applica-
tion of window function to a recorded hologram and derive the
corresponding mathematical model to facilitate the analysis.

DH includes two major processes: digital recording and nu-
merical reconstruction [22]. The hologram is the interference
pattern of the object wave o and the reference wave r at the CCD
recording plane and ban be mathematically [22] expressed as

= + = * + * + * + * ( )h r o rr oo ro or , 12

The application of window function w to the hologram h is de-
scribed mathematically as

= × = * + * + * + * ( )h h w rr w oo w ro w or w, 2w

where × and * are the multiplication and conjugate operators
respectively. hw is the window function modified hologram.

Without loss of generality and for ease of processing, an off-
axis DH set up is considered. For off-axis configurations, the nu-
merical reconstruction of the object image is based on the spatial
filtering of the first three terms of Eqs. (1) and (2) in the Fourier
domain of the hologram. Then, the fourth term is left and multi-
plied with the reference wave r. In the case without the applica-
tion of window function, the term r o2 is recovered and produces a
real image of the object. In the case with the application of win-
dow function, the term r ow2 is obtained and produces a window
function modified real image of the object. In both cases, the factor
r 2 only influences the brightness of the image. It does not affect
the phase of the image. The utilization of the reference wave in
off-axis DH is just to assist the acquisition of the digital complex
object wave o. Its impact is not the focus of this work and hence
will not be considered in this paper. We directly focus on the
complex object wavefield ow instead.

The whole process of DH including the application of window
function is described in Fig. 1 (without the consideration of the
reference wave r). Due to the separable property of Fresnel
transform, only one dimension case is considered and it can be
extended to two-dimension easily. First, the object wave s(x) at the
object plane propagates from the object to the CCD plane and
becomes the object wave at the CCD plane o(x) which interferes
with the reference beam at the CCD. After the digital recording of
the hologram, a window function w(x) is applied to the hologram.
In the numerical reconstruction process, the window function
modified object wavefront ( ) = ( ) ( )m x w x o x is recovered. m(x) is
further numerically back propagated to image plane to reconstruct

the image i(x) in numerical reconstruction process. The whole
process can be expressed mathematically as Eq. (3) in spatial do-
main:

{ }{ }( ) = ( ) × ( ) ( )−i x Fresnel Fresnel s x w x , 31

where Fresnel and Fresnel�1 denotes Fresnel diffraction integral
and inverse Fresnel diffraction integral respectively. The Fresnel
diffraction integral expresses the free-space propagation process
of light in the near field of object [31]. It expresses the relation
between the object wave s(x) at the object plane and the object
wave o(x) at the CCD plane. The object wave at the CCD plane o(x)
is the convolution of the object s(x) and the Fresnel diffraction
impulse response which is the amplitude point spread function
(APSF) of the free-space propagation [31]. The convolution in
spatial domain is replaced by product in frequency domain. The
Fourier transform of the APSF is named the amplitude or coherent
transfer function of propagation through free space as H(f) [31].
According to the above knowledge, we extend the Fresnel dif-
fraction integral in Eq. (3) and it is expressed by Eq. (4) as below:

{ }( ) = ( ( ) × ( )) ⊗ ( ) × *( ) ( )− ⎡⎣ ⎤⎦i x Fourier S f H f W f H f , 41

where S(f) andW(f) are the Fourier transforms of s(x) and w(x). ⊗is
convolution operator. Fourier�1 and H(f) denotes the inverse
Fourier transform, coherent transfer function of propagation
through free space, respectively. Simplifying and substituting

( ) = πλ−H f e ejkz j zf2 [31] into Eq. (4) gives
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where f and f̂ represent frequency.
Eq. (5) now permits the study of the impact of different win-

dows functions on the axial error.

3. Simulation investigation and analysis

In this section, effect of different window functions on the axial
error is studied through simulation. This study would help identify
the specific factor of window function which contributes to the
axial error and could be used as the indicator for window function
selection to suppress the axial error.

3.1. Simulation of the application of window functions

In simulation, Hann, Hamming, Taylor and rectangle windows

Fig. 1. The diffraction of object wavefield and reconstruction.
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