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When measuring the surface shape of a transparent sample using wavelength-tuning Fizeau inter-
ferometry, the calculated phase is critically determined by not only phase-shift errors, but also by cou-
pling errors between higher harmonics and phase-shift errors. This paper presents the derivation of a 13-
sample phase-shifting algorithm that can compensate for miscalibration and first-order nonlinearity of
phase shift, coupling errors, and bias modulation of the intensity, and has strong suppression of the
second reflective harmonic effect. The characteristics of the 13-sample algorithm are estimated with
respect to Fourier representation in the frequency domain. The phase error of measurement performed
using the 13-sample algorithm is discussed and compared with those of measurements obtained using
other conventional phase-shifting algorithms. Finally, the surface shape of a fused silica wedge plate
obtained using a wavelength tuning Fizeau interferometer and the 13-sample algorithm are presented.
The experimental results indicate that the surface shape measurement accuracy for a transparent fused
silica plate is 3 nm. The accuracy of the measurement is discussed by comparing the amplitudes of the

crosstalk noise calculated using other conventional algorithms.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Surface shape is a fundamental characteristic of transparent
optical devices used in precision measurements and the semi-
conductor industry. Atomic force microscopes (AFMs) have been
widely used in the semiconductor industry to measure the surface
shape of optical devices precisely. However, measurements using
AFMs require a considerable amount of time to measure the entire
surface shape distribution [1,2].

Surface shape measurement of a large-diameter transparent
sample can be achieved using wavelength-tuning Fizeau inter-
ferometry. In wavelength-tuning interferometry, the phase differ-
ence between a sample beam and a reference beam is varied by
phase shifting, and the signal irradiance is acquired at equal in-
tervals of the phase difference [3]. The phase distribution of a
fringe pattern can be calculated using a phase-shifting algorithm.
Recently, common-path interferometers [4,5] have also been used
for surface profiling when detecting wide defects on a silicon
wafer [6].
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Phase-shift errors and nonsinusoidal waveforms of the
signal are the most common sources of systematic errors in
phase evaluation [7]. Moreover, the effects of the coupling er-
rors between phase-shift errors and higher harmonic compo-
nents should be considered [8]. In particular, the effects of
second harmonic components become significantly large when
measuring a transparent surface shape or a highly reflective
surface shape [8,9], because the reflectivities of the reference
and sample surfaces should be considered. The effect of mul-
tireflection can be suppressed by using other methods, e.g.,
broadband light sources, such as a mode-locked laser [10] and
white light [11], and antireflection coatings on the reference
surface [12,13]. However, the measurement methods using a
broadband light source give rise to low fringe contrast, high
random noise, and poor signal-to-noise ratio. Moreover, anti-
reflection coatings on the reference surface deteriorate the
accuracy of the surface. Hence, coatings influence the total
uncertainty of surface shape measurement. The photon shot
noise of a charged-coupled device (CCD) camera also affects
measurement accuracy and should be considered when mea-
suring surface shape using a wavelength-tuning Fizeau inter-
ferometer. Recently, a theory for determining phase errors
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based on the Poisson statistics of photons has been reported
[14]. Using this theory, the phase errors resulting from photon
shot noise can be formulated and estimated more statistically.
When using a wavelength-tuning diode laser as the phase
shifter, the nonlinearity of phase shift and intensity modula-
tion during wavelength tuning degrade the measurement ac-
curacy [15-17].

Several error-compensating phase-shifting algorithms
minimize systematic phase errors [9,18-31]. The prominent
Schwider —Hariharan five-sample algorithm [9,18] can com-
pensate for phase-shift miscalibration but not the coupling
errors between harmonics and phase-shift errors. Larkin and
Oreb derived an (N+1)-sample symmetrical phase-shifting
algorithm [19] based on the Fourier representation [32] and
discussed the effects of nonsinusoidal waveforms and residual
phase-shift errors. Schmit and Creath developed five-sample
and six-sample algorithms [22] based on the extended aver-
aging method. Using a data-sampling window, de Groot de-
veloped a seven-sample algorithm [23] that can compensate
for up to second-order nonlinearity of phase shift. However,
these algorithms do not compensate for coupling errors and
intensity modulation during phase shifting. Surrel developed
a windowed phase-shifting algorithm that can compensate for
phase-shift miscalibration and coupling errors using the
characteristic polynomial theory [24]|. However, the wind-
owed phase-shifting algorithm does not compensate for first-
order nonlinearity of phase shift. Onodera derived a six-
sample algorithm that is insensitive to intensity modulation
[25], and Surrel described this insensitivity using the char-
acteristic polynomial theory [26]. However, Onodera's six-
sample algorithm cannot suppress second harmonic compo-
nents or be applied to the surface measurement of transparent
plates.

We have already developed a 4N—3 algorithm [31] that can
compensate for up to second-order nonlinearity of phase shift and
coupling errors. However, the 4N — 3 algorithm is difficult to utilize
for actual measurements in the manufacturing industry. In Ref.
[31], 61 images were acquired for measurement, though it is dif-
ficult to acquire so many images in the glass manufacturing in-
dustry. In actual interferometric measurements, it is preferable to
use as few images as possible to reduce time and technical
problems.

This paper presents the derivation of a 13-sample phase-
shifting algorithm that can compensate for phase-shift mis-
calibration, first-order nonlinearity in phase shift, coupling
errors, and bias modulation of the intensity, and has a strong
suppression ability for second harmonic components. It is
shown that the 13-sample algorithm yields the smallest phase
errors compared with conventional phase-shifting algorithms.
Finally, the surface shape of a transparent fused silica wedge
plate measured using a wavelength-tuning Fizeau inter-
ferometer and the 13-sample algorithm is presented. The
measurement accuracy is discussed by comparing the ampli-
tudes of crosstalk noise calculated using other phase-shifting
algorithms.

2. 13-Sample phase-shifting algorithm
2.1. Phase-shifting algorithm and characteristic polynomial theory

A laser Fizeau interferometer (Fig. 1) allows the interference of
multiple reflections between a sample surface and a reference
surface by virtue of the high degree of coherence of the light. Let
the reference and sample surface reflectivities be r; and r,
respectively.

Reference _/

surface

Sample —

Fig. 1. Laser Fizeau interferometer.

From Fig. 1, the observed signal irradiance I(o,) in the inter-
ference fringe pattern during phase shifting is given by [8,28]
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where «, is the phase-shift parameter, and A, and ¢, are the
amplitude and phase of the mth harmonic component, re-
spectively. The DC component Iy of the signal irradiance and
the fringe contrast y,, of the mth harmonic components are
given by [8,28]
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The vy, for successive harmonics of order m decreases in
strength by a factor of —./fir;. The phase distribution ¢, can be
determined using a phase-shifting algorithm. A general expression
for the calculated phase in M-sample algorithm is given by [7]
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where a, and b, are the rth sampling amplitudes, and (o) is given
by Eq. (1). When the phase shift is nonlinear, each a;, value is a
function of the phase-shift parameter. It can be expressed as a
polynomial function of the unperturbed phase-shift value ag, as
[27]
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where p is the maximum order of the nonlinearity, ¢ is the
error coefficient of the phase-shift miscalibration, g
(1 <gq <p)is the error coefficient of the qth nonlinearity of the
phase shift, and ao,=2xn[r —(M +1)/2]/N is the unperturbed
phase shift.

The phase error Ag in the calculated phase is a function of the
amplitude ratios A,/A; and of the error coefficients &g, and it can
be expanded as the following Taylor's series
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