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a b s t r a c t

When measuring the surface shape of a transparent sample using wavelength-tuning Fizeau inter-
ferometry, the calculated phase is critically determined by not only phase-shift errors, but also by cou-
pling errors between higher harmonics and phase-shift errors. This paper presents the derivation of a 13-
sample phase-shifting algorithm that can compensate for miscalibration and first-order nonlinearity of
phase shift, coupling errors, and bias modulation of the intensity, and has strong suppression of the
second reflective harmonic effect. The characteristics of the 13-sample algorithm are estimated with
respect to Fourier representation in the frequency domain. The phase error of measurement performed
using the 13-sample algorithm is discussed and compared with those of measurements obtained using
other conventional phase-shifting algorithms. Finally, the surface shape of a fused silica wedge plate
obtained using a wavelength tuning Fizeau interferometer and the 13-sample algorithm are presented.
The experimental results indicate that the surface shape measurement accuracy for a transparent fused
silica plate is 3 nm. The accuracy of the measurement is discussed by comparing the amplitudes of the
crosstalk noise calculated using other conventional algorithms.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Surface shape is a fundamental characteristic of transparent
optical devices used in precision measurements and the semi-
conductor industry. Atomic force microscopes (AFMs) have been
widely used in the semiconductor industry to measure the surface
shape of optical devices precisely. However, measurements using
AFMs require a considerable amount of time to measure the entire
surface shape distribution [1,2].

Surface shape measurement of a large-diameter transparent
sample can be achieved using wavelength-tuning Fizeau inter-
ferometry. In wavelength-tuning interferometry, the phase differ-
ence between a sample beam and a reference beam is varied by
phase shifting, and the signal irradiance is acquired at equal in-
tervals of the phase difference [3]. The phase distribution of a
fringe pattern can be calculated using a phase-shifting algorithm.
Recently, common-path interferometers [4,5] have also been used
for surface profiling when detecting wide defects on a silicon
wafer [6].

Phase-shift errors and nonsinusoidal waveforms of the
signal are the most common sources of systematic errors in
phase evaluation [7]. Moreover, the effects of the coupling er-
rors between phase-shift errors and higher harmonic compo-
nents should be considered [8]. In particular, the effects of
second harmonic components become significantly large when
measuring a transparent surface shape or a highly reflective
surface shape [8,9], because the reflectivities of the reference
and sample surfaces should be considered. The effect of mul-
tireflection can be suppressed by using other methods, e.g.,
broadband light sources, such as a mode-locked laser [10] and
white light [11], and antireflection coatings on the reference
surface [12,13]. However, the measurement methods using a
broadband light source give rise to low fringe contrast, high
random noise, and poor signal-to-noise ratio. Moreover, anti-
reflection coatings on the reference surface deteriorate the
accuracy of the surface. Hence, coatings influence the total
uncertainty of surface shape measurement. The photon shot
noise of a charged-coupled device (CCD) camera also affects
measurement accuracy and should be considered when mea-
suring surface shape using a wavelength-tuning Fizeau inter-
ferometer. Recently, a theory for determining phase errors
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based on the Poisson statistics of photons has been reported
[14]. Using this theory, the phase errors resulting from photon
shot noise can be formulated and estimated more statistically.
When using a wavelength-tuning diode laser as the phase
shifter, the nonlinearity of phase shift and intensity modula-
tion during wavelength tuning degrade the measurement ac-
curacy [15–17].

Several error-compensating phase-shifting algorithms
minimize systematic phase errors [9,18–31]. The prominent
Schwider�Hariharan five-sample algorithm [9,18] can com-
pensate for phase-shift miscalibration but not the coupling
errors between harmonics and phase-shift errors. Larkin and
Oreb derived an (Nþ1)-sample symmetrical phase-shifting
algorithm [19] based on the Fourier representation [32] and
discussed the effects of nonsinusoidal waveforms and residual
phase-shift errors. Schmit and Creath developed five-sample
and six-sample algorithms [22] based on the extended aver-
aging method. Using a data-sampling window, de Groot de-
veloped a seven-sample algorithm [23] that can compensate
for up to second-order nonlinearity of phase shift. However,
these algorithms do not compensate for coupling errors and
intensity modulation during phase shifting. Surrel developed
a windowed phase-shifting algorithm that can compensate for
phase-shift miscalibration and coupling errors using the
characteristic polynomial theory [24]. However, the wind-
owed phase-shifting algorithm does not compensate for first-
order nonlinearity of phase shift. Onodera derived a six-
sample algorithm that is insensitive to intensity modulation
[25], and Surrel described this insensitivity using the char-
acteristic polynomial theory [26]. However, Onodera's six-
sample algorithm cannot suppress second harmonic compo-
nents or be applied to the surface measurement of transparent
plates.

We have already developed a 4N�3 algorithm [31] that can
compensate for up to second-order nonlinearity of phase shift and
coupling errors. However, the 4N�3 algorithm is difficult to utilize
for actual measurements in the manufacturing industry. In Ref.
[31], 61 images were acquired for measurement, though it is dif-
ficult to acquire so many images in the glass manufacturing in-
dustry. In actual interferometric measurements, it is preferable to
use as few images as possible to reduce time and technical
problems.

This paper presents the derivation of a 13-sample phase-
shifting algorithm that can compensate for phase-shift mis-
calibration, first-order nonlinearity in phase shift, coupling
errors, and bias modulation of the intensity, and has a strong
suppression ability for second harmonic components. It is
shown that the 13-sample algorithm yields the smallest phase
errors compared with conventional phase-shifting algorithms.
Finally, the surface shape of a transparent fused silica wedge
plate measured using a wavelength-tuning Fizeau inter-
ferometer and the 13-sample algorithm is presented. The
measurement accuracy is discussed by comparing the ampli-
tudes of crosstalk noise calculated using other phase-shifting
algorithms.

2. 13-Sample phase-shifting algorithm

2.1. Phase-shifting algorithm and characteristic polynomial theory

A laser Fizeau interferometer (Fig. 1) allows the interference of
multiple reflections between a sample surface and a reference
surface by virtue of the high degree of coherence of the light. Let
the reference and sample surface reflectivities be r1 and r2,
respectively.

From Fig. 1, the observed signal irradiance I(αr) in the inter-
ference fringe pattern during phase shifting is given by [8,28]
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where αr is the phase-shift parameter, and Am and φm are the
amplitude and phase of the mth harmonic component, re-
spectively. The DC component I0 of the signal irradiance and
the fringe contrast γm of the mth harmonic components are
given by [8,28]
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The γm for successive harmonics of order m decreases in
strength by a factor of − r r1 2 . The phase distribution φ1 can be
determined using a phase-shifting algorithm. A general expression
for the calculated phase in M-sample algorithm is given by [7]
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where ar and br are the rth sampling amplitudes, and I(αr) is given
by Eq. (1). When the phase shift is nonlinear, each αr value is a
function of the phase-shift parameter. It can be expressed as a
polynomial function of the unperturbed phase-shift value α0r as
[27]
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where p is the maximum order of the nonlinearity, ε0 is the
error coefficient of the phase-shift miscalibration, εq
(1rqrp) is the error coefficient of the qth nonlinearity of the
phase shift, and α0r¼2π[r �(M þ1)/2]/N is the unperturbed
phase shift.

The phase error Δφ in the calculated phase is a function of the
amplitude ratios Am/A1 and of the error coefficients εq, and it can
be expanded as the following Taylor's series

Fig. 1. Laser Fizeau interferometer.
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