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A B S T R A C T

Long-term energy systems models have been used extensively in energy planning and climate policy anal-
ysis. However, specifically in energy systems optimization models, heterogeneity of consumer preferences
for competing energy technologies (e.g., vehicles), has not been adequately represented, leading to behav-
iorally unrealistic modeling results. This can lead to policy analysis results that are viewed by stakeholders
as clearly deficient. This paper shows how heterogeneous consumer behavioral effects can be introduced
into these models in the form of perceived disutility costs, to more realistically capture consumer choice
in making technology purchase decisions. We developed a novel methodology that incorporates the theory
of a classic consumer choice model into a commonly used long-term energy systems modeling frame-
work using a case study of light-duty vehicles. A diverse set of consumer segments (thirty-six) is created
to represent observable, identifiable differences in factors such as annual driving distances and attitude
towards risks of new technology. Non-monetary or “disutility” costs associated with these factors are intro-
duced to capture the differences in preferences across consumer segments for various technologies. We
also create clones within each consumer segment to capture randomly distributed unobservable differences
in preferences. We provide and review results for a specific example that includes external factors such
as recharging/refueling station availability, battery size of electric vehicles, recharging time and perceived
technology risks. Although the example is for light-duty vehicles in the US using a specific modeling system,
this approach can be implemented more broadly to model the adoption of consumer technologies in other
sectors or regions in similar energy systems modeling frameworks.

© 2018 Published by Elsevier B.V.

1. Introduction

Energy systems models have been used to understand the inter-
actions between supply and demand, the role of new technologies,
and the impacts of policies under various long-term scenarios. The
model paradigm incorporates features from several areas such as
energy, economics, engineering, and environment. Since the 1970s,
several kinds of energy systems models have been developed that
employ different types of mathematical methods such as linear
programming (MARKAL, Loulou et al., 2004; TIMES, Loulou et al.,
2005) accounting (LEAP, Heaps, 2016), and simulation (WEM, IEA,
2016).

* Corresponding author.
E-mail addresses: kramea@ucdavis.edu (K. Ramea), dsbunch@ucdavis.edu

(D.S. Bunch), ccyang@ucdavis.edu (C. Yang), sonia.yeh@chalmers.se (S. Yeh),
jmogden@ucdavis.edu (J.M. Ogden).

Models based on a linear programming framework (commonly
refer to as ESOM (Energy System Optimization Model)) identify
least-cost investment pathways under different long-term scenarios.
They represent technologies in great detail, but have been criticized
for producing results that are an unrealistic representation of mar-
ket behavior (Schäfer, 2012) . This problem of a highly simplified
representation of consumer behavior in long-term integrated assess-
ment energy models has been long recognized (Wilson and Swisher,
1993) . Many identify this lack of a realistic depiction of consumer
behavior as one of the major challenges that ESOM must address
to build a complete climate policy analysis framework, as concerns
about achieving climate goals increase over time (Brosch et al., 2016;
DeCarolis et al., 2017; Pfenninger et al., 2014).

1.1. Energy Systems Optimization Model (ESOM)

ESOMs are one of the most commonly used modeling frameworks
where optimal solutions are obtained using an objective function
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List of acronyms

MARKAL Market Allocation
TIMES The Integrated MARKAL-EFOM System
EFOM Energy Flow Optimization Model
ESOM Energy Systems Optimization Model
COCHIN Consumer Choice Integration
MA3T Market Allocation of Advanced Automotive

Technologies
MNL Multinomial Logit (discrete choice model)
NMNL Nested Multinomial Logit (discrete choice model)
DSL conventional diesel vehicle
G.Hyb gasoline hybrid vehicle
D.Hyb diesel hybrid vehicle
BEV battery electric vehicle
PHEV plug-in hybrid vehicle
FCV fuel cell vehicle
VMT vehicle miles traveled
ITAX investment tax (a TIMES model attribute)
GAMS General Algebraic Modeling System
SM supplementary material

Equation variables and units
D end-use demand in year y (miles)
y model year
n Vehicle technology
C annualized cost per mile ($/mile)
F price per unit energy fuel ($/GJ)
E vehicle efficiency (miles/GJ)
f fuel
M annual miles traveled (miles)
g consumer
i clone
r random number
l scale factor
U indirect utility
V observable utility
e random error term
A available alternatives

that minimizes the discounted total system cost over the entire
model horizon. For example, MARKAL and TIMES developed by the
International Energy Agency and Energy Technology Systems Analy-
sis Programme (IEA-ETSAP, 2001) have been used widely to conduct
in-depth analyses of energy pathways for long-term scenarios (UK-
MARKAL, Kannan et al., 2007; CA-TIMES, Yang et al., 2015; US-TIMES,
Babaee et al., 2014). These models assume a single, social deci-
sion maker whose decision is based solely on cost minimization.
Because linear programming leads to corner solutions, this yields all
or nothing outcomes on technology investments. Specifically, solv-
ing the model yields a decision to invest in a single technology in a
given year (rather than a mix of technologies), but may switch to an
entirely different technology in the next year. This is also referred
to as “knife-edge” behavior as small changes in costs can lead to a
complete shift from one technology to another.

1.2. Recent developments in incorporating consumer behavior in
ESOM frameworks

Modelers have typically overcome this behavior by imposing
“ad-hoc” constraints such as limits on market shares and sales
growth rates (Mundaca et al., 2010) . Modeling “tricks,” i.e., meth-
ods and values that lack strong theoretical underpinnings and

coherent empirical observations, such as hurdle rates, market share
constraints, and technology growth rate constraints have been
commonly introduced to make the scenarios of the adoption rate
of technologies look more realistic. These shortcomings have long
been recognized and to some extent have undermined the valid-
ity of ESOM and their ability to make credible scenarios and policy
evaluations.

Progress has been made in recent years to improve the behav-
ioral realism of ESOM as detailed in DeCarolis et al. (2017). Table 1
summarizes the philosophies of recent ESOM studies incorporat-
ing consumer behavior realism in TIMES models. The most common
approach is to create different consumer segments to represent
the heterogeneity in consumer demand level and/or consumer
choice (Bunch et al., 2015; Cayla and Maïzi, 2015; Daly et al.,
2014; McCollum et al., 2016; Nguene et al., 2011; Ramea, 2016) .
Additionally, disutility costs have been introduced to represent per-
ceived “non-monetary” costs (e.g., inconvenience cost or lack of new
vehicle model availability), time cost, risk attitude, or market barriers
(e.g., lack of awareness) (Nguene et al., 2011) . Behavioral constraints,
such as time budget constraints (Daly et al., 2014; Tattini et al., 2018)
and household budget constraints (Cayla and Maïzi, 2015) have also
been considered in some models.

In general, these studies point to the fact that consumer
investment decisions are often dominated by non-monetary costs,
and there is significant heterogeneity in consumer demand and
preferences. This paper extends the theoretical work laid out in
Bunch et al. (2015) by adding a case study and comparing the
results with the original consumer choice model that this model
is based on. These are explained in more detailed in the following
sections.

1.3. A novel approach: incorporating a consumer choice model within
an ESOM framework

The term “consumer choice” refers to the purchase decisions of
consumers, and in many social science fields discrete choice models
(such as multinomial logit and nested-multinomial logit) are used
to compute the purchase probability of each choice alternative for
a given consumer (or group of consumers with a specified set of
explanatory variables) (Koppelman and Bhat, 2006; Train, 2009) .
An important unifying behavioral framework (random utility max-
imization [RUM]) assumes that each individual consumer chooses
the alternative that maximizes her utility (Train, 2009) . However,
these utilities are unobservable and randomly distributed from the
perspective of the analyst. A general representation of the RUM
framework is:

Um,j = V
(
xj, dm; b)

+ em,j for all j ∈ A (1)

where Um,j is interpreted in economic theory as consumer m′s
(indirect) utility (conditional on choosing alternative j), and A is the
set of all available alternatives. The function V() is a model for the
mean of utility as a function of its arguments, the vectors dm and xj

denote consumer characteristics and attributes of choice alternative
j, respectively, b is a vector of parameters (weights) that represent
consumer preferences, and em,j is a random disturbance term. In this
framework, the probability of consumer m choosing alternative a is
given by Pm,a = Probability (Um,a ≥ Um,j, for all j in A).

For practical behavioral modeling, researchers typically assume
a linear-in-parameters functional form for V(). For purposes of
this paper, we assume that a segmentation scheme for consumers
has been developed based on specific observable characteristics.
Assume there are G segments, and let g(m) denote the segment to
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