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A B S T R A C T

Electricity prices are characterised by strong autoregressive persistence, periodicity (e.g. intraday, day-of-
the week and month-of-the-year effects), large spikes or jumps, GARCH and – as evidenced by recent
findings – periodic volatility. We propose a multivariate model of volatility that decomposes volatility mul-
tiplicatively into a non-stationary (e.g. periodic) part and a stationary part with log-GARCH dynamics. Since
the model belongs to the log-GARCH class, the model is robust to spikes or jumps, allows for a rich vari-
ety of volatility dynamics without restrictive positivity constraints, can be estimated equation-by-equation
by means of standard methods even in the presence of feedback, and allows for Dynamic Conditional Cor-
relations (DCCs) that can – optionally – be estimated subsequent to the volatilities. We use the model to
study the hourly day-ahead system prices at Nord Pool, and find extensive evidence of periodic volatility
and volatility feedback. We also find that volatility is characterised by (positive) leverage in one third of the
hours, and that a DCC model provides a better fit of the conditional correlations than a Constant Conditional
Correlation (CCC) model.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Modelling the uncertainty or volatility of electricity prices is of
great importance for energy market participants. On the supply side,
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producers of electricity need estimates of the time-varying price
volatility in order to determine the risks of future production lev-
els. On the demand side, consumers of electricity need the same type
of information in order to ascertain the risks associated with deci-
sions about when and where to produce goods, and in order to hedge
against adverse price changes.

It is well known that electricity prices are characterised by
autoregressive persistence and periodicity effects (e.g. hour-of-the-
day, day-of-the-week and month-of-the-year effects) in the con-
ditional mean, see e.g. Bunn (2000), Knittel and Roberts (2005),
Janczura et al. (2013), and Weron (2014). It is also well known
that the volatility of electricity prices is characterised by Autore-
gressive Conditional Heteroscedasticity (ARCH) and large spikes or
jumps, see e.g. Escribano et al. (2002, 2011), Koopman et al. (2007),
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and Hellström et al. (2012). Since the periodicity effects in the
conditional mean usually account for a considerable proportion
of the conditional mean dynamics, it is reasonable to conjecture
that the same may also be the case for volatility. Recently, this
line of research has received increasing attention. Bauwens et al.
(2013, Section 4.2), for example, in a three-dimensional multivari-
ate model of monthly, quarterly and yearly Phelix baseload futures
at the European Energy Exchange, find that volatility depends on
the number of days-to-delivery, i.e. that the volatility increases as
the future in question approaches maturity. Sucarrat et al. (2016,
Section 4), in a two-dimensional multivariate model of peak and
off-peak day-ahead prices in the Oslo region (Nord Pool), find that
day-of-the-week effects matter for volatility, and that peak volatility
dynamics is less persistent than off-peak. Dupuis (2017), in a fifteen-
dimensional multivariate model of electricity prices in the New York
area, includes dummies in the volatility equations to accommodate
hour-of-the-day and day-of-the-week effects.

There are two main challenges in the multivariate modelling of
electricity price volatility. The first is the socalled “curse of dimen-
sionality”: As the multivariate dimension grows, joint estimation of
the full model becomes infeasible in practice due to the number
of parameters that has to be estimated. This problem is not spe-
cific to electricity prices, but it is more severe. The reason is that
volatility is likely to depend on additional covariates, e.g. weather
and market specific stochastic conditioning variables, in addition to
periodicity effects similar to those that often characterise the con-
ditional mean dynamics. Moreover, if standard or non-exponential
GARCH models are used, then the curse of dimensionality problem
is compounded, since the covariates and/or their parameters need
to be restricted in estimation in order to ensure the positivity of fit-
ted volatility. An example in which such a parameter restriction is
needed in electricity price markets is the socalled “inverse leverage
effect”, as coined by Knittel and Roberts (2005), whereby negative
shocks in one period leads to a reduction in volatility in the next
period.1 Knittel and Roberts (2005) avoid the need for a restriction
by using Nelson’s (1991) Exponential GARCH (EGARCH). However,
as is well-known, the EGARCH is not robust to spikes.2 This leads
to the second main challenge in the modelling of electricity prices:
The occurrence of price spikes. It is well-known that the ordinary
GARCH model is not robust to such spikes. This is because the spikes
affect estimation and inference inadvertently (Carnero et al., 2007;
Gregory and Reeves, 2010), and because it makes the model propen-
sive to volatility forecast failure subsequent to the spikes, see e.g.
Harvey and Sucarrat (2014, Introduction). One multivariate model
specification that has been put forward as being able to accommo-
date fat-tailed standardised errors, is the exponential version of the
Generalised Autoregressive Score (GAS) model, see e.g. Creal et al.
(2011). However, even univariate versions of this model can be very
difficult to estimate due to its nature (see the section on “Compu-
tational challenges” in Sucarrat (2013, p. 142)), and the problem is
compounded even further in the multivariate case.

We propose a multivariate model of electricity price volatility
that is robust to spikes, that sidesteps the curse of dimensional-
ity through equation-by-equation estimation, and which can include
both deterministic and stochastic covariates to accommodate peri-
odicity effects, leverage, the effect of weather-related variables, and

1 In stock markets, by contrast, a negative shock is usually followed by an increase.
Arguably, the inverse leverage effect should instead be referred to as negative asym-
metry, since the effect is not due to leverage in many markets (e.g. electricity and
currency markets), and because a negative parameter value is not obtained as the
mathematical inverse of a positive parameter.

2 This is the reason why Nelson proposed his model in combination with the Gener-
alised Error Distribution (GED) rather than with the standardised Student’s t, since the
unconditional variance will generally not exist if the standardised error is distributed
as the latter, see Nelson (1991, p. 365).

so on. The model we propose is a multivariate multiplicative compo-
nent log-GARCH-X model that decomposes volatility multiplicatively
into a non-stationary deterministic part of arbitrary form, and a sta-
tionary stochastic part. In order to enable equation-by-equation esti-
mation, we make use of recent ideas developed formally in Francq
and Zakoïan (2016), and in Francq and Sucarrat (2017). In particular,
our model allows for feedback volatility effects among the equations,
and Dynamic Conditional Correlations (DCCs) that – optionally –
can be estimated subsequent to the volatility equations. As long as
the DCC specification is appropriately chosen, this will ensure posi-
tive definiteness of the conditional covariance matrix. The model we
propose can be viewed as a generalisation of Sucarrat et al. (2016,
Section 4) in two ways. First, the deterministic component is much
more general, since it can be of arbitrary form (i.e. it needs not be a
linear combination of non-stochastic covariates). Second, we set up
the estimation problem in such a way that the deterministic and sta-
tionary parts can be estimated separately, each by common methods
that are widely available. In particular, in many cases the deter-
ministic part will be estimable by an Ordinary Least Squares (OLS)
regression, and the stochastic part will be estimable via an ARMA-
regression. The equation-by-equation estimation procedure that we
propose is thus readily implemented in software that is widely avail-
able. We use the model to study the multivariate volatility of hourly
day-ahead system prices at Nord Pool. We find extensive evidence
of periodicity in the volatility in that it depends on the day-of-the-
week, and in that volatility dynamics varies intradaily. We also find
extensive evidence of volatility feedback from adjacent hours. Lever-
age (of positive type), however, is only present in about one third of
the instances, and mostly between 1 am and 5 am. In only a single
instance – at 7 pm – does a plain log-GARCH(1,1) without periodic-
ity provide a better fit of the volatility. Finally, we also find that the
corrected DCC (cDCC) of Aielli (2013) provides a better fit of the con-
ditional correlations than a Constant Conditional Correlation (CCC)
specification. Interestingly, the correlations are found to be at their
strongest among adjacent hours, and that the strength is inversely
related to the degree of adjacency: The further away, the weaker
the correlation. This has implications for risk-management, since
it implies that portfolio risk is reduced if the degree of adjacency
among the portfolio components is reduced.

The rest of the paper is organised as follows. The next section,
Section 2, outlines the model and the equation-by-equation estima-
tion procedure. Section 3 contains our study of hourly day-ahead
price volatility at Nord Pool. Section 4 contains the conclusions,
whereas tables and figures are located at the end after the references.

2. Model and estimator

2.1. The model

Let rt = (r1t , . . . , rMt)′ denote an M-dimensional vector of price
returns at t. A generic model of rt can be written as (see e.g. Engle
(2002))

rt = lt + 4t , t ∈ Z, (1)

4t = (41t , . . . , 4Mt)′, Ht = Et−1 (4t4
′
t) , D2

t = diag(Ht), (2)

gt = D−1
t 4t , Rt = Et−1 (gtg

′
t) , (3)

where lt is the conditional mean (say, a VAR-X as in the empiri-
cal section, see Section 3.2), 4t = (41t , . . . , 4Mt)′ is the error term,
Ht is an M × M covariance matrix conditional on the past infor-
mation set Ft−1, Et−1( • ) is shorthand notation for E( • |Ft−1), D2

t is a
diagonal M × M matrix with the conditional variance or volatility
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