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A structural decomposition analysis (SDA) based on the input-output model disaggregates fluctuations in the
total factor budget into shifts in its determinants. The essence of SDA is its ability to quantify the critical factors
that contribute to changes in phenomena. However, it is well-known that various uncertainties are manifest in
input-output datasets and SDA results may be vulnerable to substantive biases including erroneous sign rever-
sals. This study employsMonte Carlo simulations and investigates this sign reversal problem. The simulations re-
veal instability in the decomposition results, particularly the effects of the intensity term and the economic
structure term. In contrast, the decomposition effect of the final demand term is relatively insusceptible in this
regard.
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1. Introduction

Structural decomposition analysis (SDA) based on the input-output
framework aims to distinguish the critical driving forces of change in
many kinds of variables over time (Rose and Casler, 1996; Miller and
Blair, 2009; Su and Ang, 2012). This technique has been used exten-
sively with respect to economic, employment, and other socio-
economic indicators (Feldman et al., 1987; Skolka, 1989; Martin and
Holland, 1992; Dietzenbacher and Hoekstra, 2002; Yang and Lahr,
2010). In the last few decades there has been increasing attention to ap-
plications of decomposition analysis within environmental studies, for
example, energy issues (Jacobsen, 2000; Kagawa and Inamura, 2001,
2004; Liao et al., 2007; Weber, 2009; Zhang and Lahr, 2014), water
use (Zhang et al., 2012; Roson and Sartori, 2015; Feng et al., 2017), ma-
terial flows (Wood et al., 2009; Weinzettel and Kovanda, 2011) and
greenhouse gas emissions (Casler and Rose, 1998; de Haan, 2001;
Peters et al., 2007; Guan et al., 2009; Wood, 2009; Lenzen et al.,
2013a; Arto and Dietzenbacher, 2014; Xu and Dietzenbacher, 2014;
Feng et al., 2015; Hoekstra et al., 2016; Lan et al., 2016; Mi et al., 2017).

In terms of the latter, SDAhas been applied not only to emissions dy-
namics in a single region but also to decomposing changes in global
emissions using a multi-region input-output (MRIO) framework
(Kagawa and Inamura, 2004; Arto and Dietzenbacher, 2014; Xu and
Dietzenbacher, 2014; Hoekstra et al., 2016; Lan et al., 2016; Malik and
Lan, 2016; Malik et al., 2016; Fujii et al., 2017). Kagawa and Inamura
(2004) introduced the inter-region input-output SDA method using
empirical data from China and Japan, and estimated the effects of
changes in intra- and inter-region energy demand linkages. Recently,
Arto and Dietzenbacher (2014) and Xu and Dietzenbacher (2014)
analyzed key drivers of changes in global CO2 emissions induced by in-
ternational trade using the World Input-Output Database (WIOD) con-
structed byDietzenbacher et al. (2013). Lan et al. (2016) applied amore
detailed MRIO SDA to global energy footprints using Eora time series
data (Lenzen et al., 2012, 2013b), and revealed that affluence and pop-
ulation growth are the main drivers of increasing footprints in both de-
veloped and developing countries.

The essence of decomposition analysis is its ability to quantify the
critical factors that contribute to changes in phenomena; results thereof
have been used for policy evaluation and formulation. However, it is
well known that various uncertainties are manifest in input-output
datasets. These uncertainties are associated with survey data, the esti-
mation of transactions, allocations, proportionally assumptions,
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changes in technology, aggregation (Lenzen, 2000; Nansai et al., 2001;
Yoshida et al., 2002; Weber, 2008; Wiedmann, 2009), and many kinds
of inventory data for environmentally-extended input-output analysis
(e.g., Nansai et al., 2012).

If there is a large change in technical coefficients during the time pe-
riod between year 0 and t, errors included in the technical coefficients at
year 0 and t does not affect the sign and magnitude of technical change
effects that is important to policy implications. The sign reversal prob-
lem discussed in this paper is that if there is a small change in technical
coefficients between year 0 and t, the sign of the technical change effects
is sensitive to the errors. Thus, depending on the nature and extent of
these uncertainties, SDA resultsmay be vulnerable to substantive biases
including erroneous sign reversals. Therefore, care needs to be taken
vis-à-vis the selection and utilization of appropriate data in SDA and
the subsequent interpretation of results from such analyses.

This study aims to investigate this sign reversal problem in SDA. As a
case study, a single region input-output table was focused upon and a
Monte Carlo-type simulation was applied to evaluate the reliability of
the decomposition results. The remainder of the paper is organized as
follows: Section 2 explains the methodology; Section 3 presents results
and a discussion; and, finally, Section 4 offers conclusions.

2. Methodology

2.1. Input-output analysis

The output vector x = (xi) (i = 1, …, n) in a fundamental input–
output analysis with n industries can be expressed as a linear equation:
x = Ax + f, where f = (fi) is the final demand vector, representing

the final global demand for the products of industry i, and A ¼ Zx̂−1

¼ ðaijÞ (j = 1, …, n) is an input coefficient matrix, expressing the in-
termediate inputs for industry i that are necessary per unit of produc-
tion of the product of industry j, for which Z = (Zij) represents the
intermediate inputs into industry j from industry i and x̂ denotes
the diagonalization of x. Solving the above linear equation for output
vector x, we obtain:

x ¼ I−Að Þ−1 f ¼ Lf ð1Þ

where I is the identity matrix and L = (I − A)−1 = (Lij) is the
Leontief inverse matrix with elements Lij expressing the output of in-
dustry i that is directly and indirectly required to satisfy one unit of
final demand from industry j.

If the intensity vector is e ¼ Ex̂ −1 ¼ ðejÞ, the total factor budget Q,
e.g., energy uses, environmental burdens or any social accounts can be
estimated as

Q ¼ e I−Að Þ−1 f ¼ eLf ð2Þ

where E= (Ej) represents the direct factor budget of industry j.

2.2. Structural decomposition analysis

A structural decomposition analysis (SDA) based on the input-
output model is a comparative static method designed to disaggregate
fluctuations in the total factor budget into shifts in its determinants
such as e, L, and f, herein. Broadly speaking, decomposition analysis
methods can be divided into two decomposition forms (additive and
multiplicative forms) and two indicator forms (Laspeyres and Divisia
families, see Lenzen, 2006 for a detailed discussion). The additive form
ismore commonly applied than itsmultiplicative counterpart in the en-
ergy and emissions domain because it yields results that are easier to in-
terpret (Lenzen, 2006, 2016; Su and Ang, 2012). In terms of indicator
forms and families, in Laspeyres-based approaches Su and Ang (2012)
suggest opting for the “SSA method” (Sun, 1998; Albrecht et al., 2002)

or the “D&L method” (Dietzenbacher and Los, 1998), both of which
are also denoted as the “DSA method” in Lenzen (2006).1 Those same
authors also suggest that the logarithmic mean Divisia index (LMDI)
method (Ang and Choi, 1997; Ang and Zhang, 2000; Choi and Ang,
2003) should be preferred in the context of Divisia-based approaches.
Both indicator forms have desirable properties such as exactness (Sun
and Ang, 2000), time reversal (Hoekstra and van den Bergh, 2003),
and zero-robustness (Wood and Lenzen, 2006; Ang and Liu, 2007).
These two decomposition methods were implemented following the
guidelines in Su and Ang (2012).

In additive decomposition, the changeΔQ in total factor budget from
time 0 to time t is decomposed as.

ΔQ ¼ Q tð Þ−Q 0ð Þ ¼ e tð ÞL tð Þf tð Þ−e 0ð ÞL 0ð Þf 0ð Þ ¼ ΔCe þ ΔCL þ ΔC f

ð3Þ

where the numbers in parentheses represent time, and the ΔCs on the
right-hand side denote the effects associated with changes in each de-
terminant. TheD&Lmethod (hereinafter referred to as theDSAmethod)
uses the average of n! different but exact forms, and, accordingly, Eq. (3)
can be expressed as Eq. (4).

ΔQDSA ¼ 1
6
Δe 2L 0ð Þf 0ð Þ þ L tð Þf 0ð Þ þ L 0ð Þf tð Þ þ 2L tð Þf tð Þf g

þ1
6

2e 0ð ÞΔLf 0ð Þ þ e tð ÞΔLf 0ð Þ þ e 0ð ÞΔLf tð Þ þ 2e tð ÞΔLf tð Þf g

þ 1
6

2e 0ð ÞL 0ð Þ þ e tð ÞL 0ð Þ þ e 0ð ÞL tð Þ þ 2e tð ÞL tð Þf gΔf

ð4Þ

Here, Δe = e(t)− e(0), ΔL = L(t)− L(0), and Δf = f(t)− f(0).2 The
first, second, and third terms on the right-hand side of Eq. (4) corre-
spond to ΔCe, ΔCL, and ΔCf, respectively.

On theother hand, Eq. (3) can bewritten using the logarithmicmean
Divisia index (LMDI) as.

ΔQLMDI ¼
Xn
ij

LM Qij tð Þ;Qij 0ð Þ� �
ln

ei tð Þ
ei 0ð Þ þ

Xn
i; j

LM Qij tð Þ;Qij 0ð Þ� �
ln

Lij tð Þ
Lij 0ð Þ

þ
Xn
ij

LM Qij tð Þ;Qij 0ð Þ� �
ln

f j tð Þ
f j 0ð Þ

ð5Þ

whereQij= eiLij fj and LM(Qij(t),Qij(0)) represent the logarithmicmean

defined as LMðQijðtÞ;Qijð0ÞÞ ¼ ΔQij

Δ lnQij
. Here, it should be noted that if we

have Q ij(t) = Q ij(0), LM(Q ij(t),Qij(0)) = Q ij(t) = Qij(0). As with
Eq. (4), the first, second, and third terms on the right-hand side of
Eq. (5) correspond to ΔCe, ΔCL, and ΔCf, respectively. To handle zero
values in the computation of LMDI, the “analytical limits strategy”
given in Ang et al. (1998) was employed as recommended by Wood
and Lenzen (2006).3

1 The two methods using Shapley values (Shapley, 1953) proposed in Sun (1998) and
Albrecht et al. (2002) were shown to be identical by Ang et al. (2003). Later, Lenzen
(2006) noted the similarity between D&L and SSA, and referred to them both under the
umbrella term “DSA method” after “Dietzenbacher/Los-Sun-Albrecht”.

2 Following Lenzen (2006), the general DSA equation of n variables with function y=
x1x2⋯xn is expressed as ΔyDSA ¼ 1

n!∑π½Sð jÞ�∑
n
i¼1ð

Qi−1
j¼1xSð jÞð0Þ

Qn
j¼iþ1xSð jÞðtÞΔxSðiÞÞ, where

S(j) represents any sequence of numbers from 1 to n, and π[S(j)] expresses the permuta-
tion of the sequence of numbers S(j).

3 Ang and Liu (2007) compared the analytical limit strategy with the small value strat-
egy which substitutes zeros with a small number, δ, between 10−10 to 10−20, and con-
cluded that the small value strategy is preferred in the context of Index Decomposition
Analysis (IDA) (Ang and Zhang, 2000). See Hoekstra and van den Bergh (2003) for a com-
parison between SDA and IDA.
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