
Three-frame generalized phase-shifting interferometry by a Euclidean
matrix norm algorithm

Yuanyuan Xu a, Yawei Wang a,b,n, Ying Ji b, Hao Han b, Weifeng Jin a

a School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
b Faculty of Science, Jiangsu University, Zhenjiang 212013, China

a r t i c l e i n f o

Article history:
Received 31 October 2015
Received in revised form
8 April 2016
Accepted 11 April 2016
Available online 19 April 2016

Keywords:
Phase-shifting interferometry
Phase retrieval
Euclidean matrix norm

a b s t r a c t

Generalized phase-shifting interferometry (GPSI) is one of the most effective techniques in imaging of a
phase object, in which phase retrieval is an essential and important procedure. In this paper, a simple and
rapid algorithm for retrieval of the unknown phase shifts in three-frame GPSI is proposed. Using this
algorithm, the value of phase shift can be calculated by a determinate formula consisting of three dif-
ferent Euclidean matrix norms of the intensity difference between two phase shifted interferograms, and
then the phase can be retrieved easily. The algorithm has the advantages of freeing from the background
elimination and less computation, since it only needs three phase-shifted interferograms without no
extra measurements, the iterative procedure or the integral transformation. The reliability and accuracy
of this algorithm were demonstrated by simulation and experimental results.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Phase-shifting interferometry (PSI) is an important technique
widely used in optical measurement and microscopy [1–4]. In
traditional PSI, a special constant phase shift, π N2 / with the in-
teger ≥N 3 between two adjacent frames, is often assumed.
Subsequently, Greivenkamp [5] and Stoilov [6] proposed general
methods to deal with arbitrary phase shifts. Although the phase
shifts do not have to be special values, they are either known
precisely or equal in these methods. In fact, it is still a strict re-
quirement on the precision of the phase shifter. In order to remove
this requirement, many methods have been reported [7–18],
among which the generalized phase shift exaction techniques [10–
18] provide a possible method for extracting arbitrary and un-
known phase shifts from holograms directly.

In general, the phase shift extraction methods can be classified
into two categories: iterative and noniterative. The iterative
methods [10,11] are greatly time-consuming since the procedures
are repeated many times to achieve acceptable accuracy. For ex-
ample, an advanced iterative algorithm based on the least squares
method is proposed to determine the phase shift and the phase
distribution simultaneously [10]. For this reason, noniterative
methods [12–21] have been favored for their speed and less
computational loads. Cai and other researchers proposed a class of

statistical algorithms to calculate the unknown phase shift directly
and reconstruct the wavefront from two or more holograms [12–
15]. These algorithms are based on the assumption that the
measured object has a random phase in π[ ]0, 2 over the whole
interferogram. To relax this assumption, another method has been
proposed to extract the phase shift accurately using the histogram
of phase difference between two adjacent frames [16]. However, it
requires determining both the background intensity and the
modulation amplitude by searching for the maximum and the
minimum intensity in each pixel of interferograms, which still
takes considerable time. Later, a self-tuning approach is proposed
to retrieve the phase shift by looking for the minimum of a merit
function [17], where the accuracy of phase shift decreases when
the phase shift is far from π/2 and the interferograms are required
to be normalized beforehand. In Ref. [18], an accurate phase shift
extraction algorithm is proposed by using the maximum and the
minimum values of the interference term. In Ref. [19], the Gram-
Schmidt (GS) orthonormalization algorithm is employed to extract
the phase with high precision and rapid speed. Both of these two-
step demodulation methods need a precondition of filtering out
the background term by a high-pass filter in advance. In Refs.
[20,21], a new kind of phase-shifting demodulation method based
on the use of principal component analysis (PCA) algorithm is
proposed. It is worth noting that this method does not require the
extraction of the phase shift to retrieve the modulating phase.
Although the PCA method is fast, it still requires the elimination of
the background term by a temporal average in advance. However,
the filtering and averaging algorithms do not work well for the
background elimination when the interferograms are with rapid

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/optlaseng

Optics and Lasers in Engineering

http://dx.doi.org/10.1016/j.optlaseng.2016.04.011
0143-8166/& 2016 Elsevier Ltd. All rights reserved.

n Corresponding author at: Faculty of Science, Jiangsu University, Zhenjiang
212013, China.

E-mail address: jszjwyw@sina.cn (Y. Wang).

Optics and Lasers in Engineering 84 (2016) 89–95

www.sciencedirect.com/science/journal/01438166
www.elsevier.com/locate/optlaseng
http://dx.doi.org/10.1016/j.optlaseng.2016.04.011
http://dx.doi.org/10.1016/j.optlaseng.2016.04.011
http://dx.doi.org/10.1016/j.optlaseng.2016.04.011
http://crossmark.crossref.org/dialog/?doi=10.1016/j.optlaseng.2016.04.011&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.optlaseng.2016.04.011&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.optlaseng.2016.04.011&domain=pdf
mailto:jszjwyw@sina.cn
http://dx.doi.org/10.1016/j.optlaseng.2016.04.011


background variation [22]. New methods that are robust to back-
ground vibration have been also proposed [23–25]. In Ref. [25], a
combination of the GS orthonormalization process and the two-
dimensional continuous wavelet transform (2D-CWT) algorithm is
used to analyze two-step arbitrarily phase-shifted interferograms.
The method works well when the interferograms contain complex
fringes, large fringe-frequency variations, noise or defect fringes. It
is still time-consuming because the 2D-CWT algorithm refers to
several times Fourier transforms.

In this paper, we propose a Euclidean matrix norm (EMN) al-
gorithm to extract the unknown phase shifts from only three in-
terferograms. After substituting the phase shifts to the three-step
phase-shifting algorithm, the phase can be retrieved easily. This
algorithm is faster since it does not use the iterative procedure or
the integral transformation. Moreover, it is easy to implement
without the background elimination or the measurements of other
parameters excepting the interferograms in the entire retrieval
process. The only requirement is the fringe limit condition, which
is easy to meet in real cases.

2. Method

For the three-frame generalized phase-shifting interferometry,
the distribution of intensity for each interferogram can be given in
the following form:

φ δ= + [ + ] ( = ) ( )I a b kcos , 1, 2, 3 1kmn mn mn mn k

where m and n denote the pixel position of rows and columns of
interferograms respectively. amn, bmn and φmn represent the back-
ground intensity, the modulation amplitude and the measured
phase, respectively. The phase shift related to the kth inter-
ferogram, δk, is usually assumed to be zero when k¼1. With the
measured intensities, the difference between the pth and qth in-
terferograms can be expressed as
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Here, we consider the Euclidean matrix norm (EMN) of the in-
tensity difference. In general, for a matrix = [ ]T tmn , with ×M N
order, its EMN is defined as ‖ ‖ = [∑ ∑ ( ) ]= =T tm
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the sign ‖‖2 is the EMN operator. Therefore, the EMN of ΔIpq can be
expressed as
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If the fringe number in each interferogram is more than one,
then the measured phase varies more than π ( )2 rad in the observed
area. As a result, the following approximation can be applied,
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Thus, Eq. (3) can be simplified as
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mn1 1
2 1/2. From Eq. (5), it is clear that Epq is

proportional to δ δ[( − ) ]sin /2q p , and there are only three un-
known quantities, namely δ2, δ3 and C . To determine these
quantities, at least three equations are required. According to Eq.
(5), there are three quantities as follows:
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In order to avoid the uncertainty of the sign, the phase shift δ is
normally constrained within the range of π[ ]0, . Therefore, δ/2
ranges from 0 to π/2, and the function of δ( )sin /2 is monotonically
increasing and positive. So δ δ( ) = ( )sin /2 sin /22 2 and

δ δ( ) = ( )sin /2 sin /23 3 . The sign of δ δ[( − ) ]sin /23 2 can be de-
termined by comparing the values of E12 and E13. For example, if

>E E13 12, it can be obtained that δ δ( ) > ( )sin /2 sin /23 2 andδ δ>/2 /23 2 ,
and then δ δ δ δ[( − ) ] = [( − ) ]sin /2 sin /23 2 3 2 . Thus, Eq. (6) can be
rewritten as
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Since E12, E13 and E23 can be determined, we get the following
relationship which relates E12 etc., with the parameterC ,
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After solving for C , δ2 and δ3 can be directly calculated from E12

and E13.
Once the phase shifts δ ( = )k 2, 3k are known, the wrapped

phase φ can be solved with following expression:
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Here, the pixel coordinates have been omitted for simplicity.

3. Numerical simulations

A series of numerical simulations of three-frame GPSI have
been carried out to verify the effectiveness of the method pro-
posed above.

First, we tested the method with two kinds of fringe patterns:
the closed ring fringe pattern and the open straight fringe pattern.
For the ring fringe pattern, the background intensity and the mod-
ulation amplitude are set as = × { − [ + ] }a m n120 exp /500mn

2 2 2

and = × { − [ + ] }b m n100 exp /500mn
2 2 2 respectively. The measured

phase is set as φ π= − × × [ + ]N m n /200mn f
2 2 2, in which =N 2f is

the fringe number in the fringe pattern,m, n¼�500, �499,…, 500.
The phase shift values of the 1th, 2th and 3th fringe patterns are
preset as δ = 0 rad1 , δ = 0.1 rad2 and δ = 0.2 rad3 , respectively.
Moreover, Gaussian noise with a signal-to-noise ratio (SNR) of 30 dB
is added to the fringe pattern. With above parameter setting, three
simulated patterns with the size of 1000�1000 pixels can be
generated with Eq. (1), as shown in Fig. 1(a–c). By means of nu-
merical calculation, δ2 and δ3 are determined as 0.0960 rad and
0.1907 rad with the associated errors of 0.0040 rad and
�0.0093 rad, respectively. Then, the wrapped and unwrapped
phase maps can be obtained easily after the determination of the
phase shift, which are illustrated in Fig. 1(d) and (e), respectively.
Fig. 1(f) is the theoretical phase. From Fig. 1(e) and (f), no significant
difference can be observed.
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