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a b s t r a c t

Propagation of horizontally polarized Gaussian beam through a double-wedge depolarizer generates
vector beams with spatially varying state of polarization. Jones calculus is used to show that such beams
are maximally nonseparable on the basis of even (Gaussian)–odd (Hermite–Gaussian) mode parity and
horizontal–vertical polarization state. The maximum nonseparability in the two degrees of freedom of
the vector beam at the double wedge depolarizer output is verified experimentally using a modified
Sagnac interferometer and linear analyser projected interferograms to measure the concurrence
0.9470.002 and violation of Clauser–Horne–Shimony–Holt form of Bell-like inequality 2.70470.024.
The investigation is carried out in the context of the use of vector beams for metrological applications.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The exploitation of mathematical isomorphism between para-
xial wave theory of light and quantum mechanics is on the rise in
the last couple of decades, starting from the Pancharatnam–Berry
geometric phase [1,2] and weak measurements [3,4] to spin Hall
Effect of light – SHEL [5] and hybrid entanglement (nonseparable
degrees of freedom) in classical light beams. Of interest to us here,
entanglement is classified into that between spatially separated
systems (non-local) [6] and between different degrees of freedom
(DoF) of a single system (local) [7]. Spreeuw in 1998 showed that
entanglement is possible between position and polarization DoF in
an optical beam and named it ‘classical entanglement’ to differ-
entiate it from its quantum counterpart [7]. More recently, Qian
and Eberly identified the degree of polarization (DoP) of an optical
field as a measure of degree of entanglement, wherein the field
amplitude and polarization vector are the two entangled DoF [8].
This was later extended to demonstrate violation of Clauser–
Horne–Shimony–Holt (CHSH) form of Bell's inequality in classical
optical fields [9]. Entanglement between polarization and spatial
mode DoF were also verified and quantified by different quantum-
inspired measurements like entropy, concurrence and violation of
Bell-like inequalities [10–14].

Applications of the classical entangled optical beams includes
fundamental areas like the resolution of a long-standing issue
concerning Mueller matrices [15], an alternative interpretation of
DoP [8] and Bell's measure as a new index of optical coherence

[16]. The proposals for using classical entangled beams in polar-
ization metrology [17] and experimental demonstration of high-
speed kinematic sensing using it [18] are some recently reported
examples. Quantum computation algorithms [19], teleportation
protocols [20,21] and quantum cryptography [22] were also pro-
posed and experimentally realized using classically entangled
optical beams.

Polarization interferometers [8], Pancharathnam–Berry phase
optical elements (Q-plates) [23] and polarization sensitive spatial
light modulators [16] are some of the techniques used for the
generation of vector beams with nonseparable polarization and
spatial mode DoF. These methods have their own advantages but
lack of portability and expensiveness are some issues in their
widespread commercial adaptability. Here we present the gen-
eration of vector beam with maximally nonseparable (MNS)
polarization and spatial mode parity DoF using an off-the-shelf
optical component, a double wedge depolarizer (DWD) suitable
for high power beams and single photon applications. The DWDs
though have been used predominantly to generate depolarized
light [24], as the name suggests, we present here that under
appropriate conditions a linearly polarized light beam passing
through it can generate an optical beam with spatially periodic
state of polarization (SoP), a vector beam. By varying the SoP of the
input beam we can generate a vector beam with different varia-
tions in the output beam SoP and also a scalar beam, with spatially
uniform polarization. The vector beam with nonseparable DoF
generated using DWD is envisioned first via Jones matrix calcu-
lations and verified experimentally using concurrence measure-
ment and is also shown to violate CHSH form of Bell-like
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inequality, making the vector beam generation method simple and
desirable for several metrological applications.

2. Theory

The geometry of the DWD is shown in Fig. 1. The beam pro-
pagation direction, z-axis is perpendicular to the face of the
device. The thickness d1 and d2 of the wedges varies along the x-
axis with d1þd2 ¼ L, the device thickness. The optic axes of the
wedges are oriented at þ45° and �45° with respect to y-axis in
the x–y plane. The Jones matrix of the DWD, JDWD can be obtained
from J2J1, where J1 and J2 are the Jones matrices of the birefrin-

gent wedges 1 and 2 given by J1 ¼
1þeiδ1 1�eiδ1

1�eiδ1 1þeiδ1

 !
and

J2 ¼
1þeiδ2 eiδ2 �1
eiδ2 �1 1þeiδ2

 !
[25]. Then,

JDWD ¼ eiδ2 þeiδ1 eiδ2 �eiδ1

eiδ2 �eiδ1 eiδ2 þeiδ1

 !
ð1Þ

where δ1 and δ2 are the phase difference between x and y
components of the field after propagating through the two
wedges.

The Jones vector of a linearly polarized laser beam propagating
in z-direction is,

E
!ðrÞ ¼ EðrÞ

cos ðθÞ
sin ðθÞ

 !
ð2Þ

where EðrÞ is the Gaussian amplitude e� r2=ω0
2

� �
of the field and θ

gives the direction of linear polarization of the beam. The beam
after propagating through the DWD is given by,

E
!0

ðrÞ ¼ EðrÞ
cos ðθÞ cos 2α x� L

2

� �� �
þ i sin ðθÞ sin 2α x� L

2

� �� �

i cos θ
� �

sin 2α x� L
2

� �� �
þ sin ðθÞ cos 2α x� L

2

� �� �
0
BBB@

1
CCCAeiαL

ð3Þ
Here, α¼ 1

2kΔn tan χ where k is the propagation vector of the
beam in free space, Δn is birefringence of the crystal, χ is the
wedge angle (Fig. 1) and the range of x coordinate is constrained
within the beam waist of the input beam.

Eq. (3) clearly shows that the state of polarization of the output
beam varies sinusoidally with a period, Λ¼ π

α in the x-direction for
all input polarization states except for diagonal θ¼ π

4

� �
and anti-

diagonal θ¼ �π
4

� �
. For horizontally polarized ðθ¼ 0Þ input beam,

E
!0

ðrÞ ¼ EðrÞ
cos 2α x� L

2

� �� �
i sin 2α x� L

2

� �� �
 !

eiαL ð4Þ

This equation can be rewritten in the form,

E
!0

ðrÞ ¼ EeðrÞx̂þ iEoðrÞŷ ð5Þ
where Ee and Eo are the spatially modulated Gaussian modes

due to the terms cos 2α x� L
2

� �� �
and sin 2α x� L

2

� �� �
which are

even and odd sinusoidal functions, respectively. Unit vectors x̂ and
ŷ are the orthonormal polarization vectors corresponding to

horizontal,
1
0

� �
and vertical,

0
1

� �
polarization states, respectively.

One can approximate the sinusoidal functions to, cos 2α x� L
2

� �� �¼
1 and sin 2α x� L

2

� �� �¼ 2α x� L
2

� �
for smaller values of x, i.e., with

smaller size of beam waist. So the even and odd spatial modes can
be expressed in terms of 0th order (fundamental) and 1st order
Hermite–Gaussian modes if the input beam waist is sufficiently
small as stated in Eq. (6). We calculated a threshold beamwaist for
this approximation from numerically simulated results which is
found to be, ω0o π

16α.

EeðrÞ ¼ 1e� r2=ω0
2 ¼H0 α x� L

2

� �� 	
e� r2=ω0

2

EoðrÞ ¼ 2α x� L
2

� �
e� r2=ω0

2 ¼H1 α x� L
2

� �� 	
e� r2=ω0

2 ð6Þ
where H0 and H1 are the zero and first order Hermite polynomials.

The nonseparability between polarization and spatial mode
parity DoF in the output beam as described by Eq. (5) is very
significant. The polarization and spatial mode parity DoFs con-
sidered as vectors belonging to two independent Hilbert vector
spaces. Then, Eq. (5) can be considered as a superposition of
products of vectors from different vector space that cannot be
rearranged into a single product that separates the vectors, the
reason for their nonseparability. We normalize Eq. (5) with respect
to intensity I ¼ EeðrÞEeðrÞþEoðrÞEoðrÞ


 �
and remove the imaginary

term by introducing a π=2 phase using a vertically oriented quarter
wave plate (QWP) to give,

e!0ðrÞ ¼ E
!0

ðrÞ=
ffiffi
I

p
¼ eeðrÞx̂þeoðrÞŷ ð7Þ

We use quantum mechanical notations for simplicity in further
equations. The unit polarization vectors x̂ and ŷ will be written as
x̂- u1j i and ŷ- u2j i and the unit spatial mode parity as eeðrÞ- f 1

 �
and eoðrÞ- f 2

 �
[9]. Here, u1 u2〉¼ f 1 f 2〉¼ 0




and the projectors in

the two spaces ju1i u1h jþ u2j i u2h j ¼ f 1
 �

f 1

 þ f 2

 �
f 2

 ¼ 1. Then the

output beam given by Eq. (7) takes the form,

E
!0

ðrÞ=
ffiffi
I

p
¼ ej i ¼ 1ffiffi

2
p u1j i f 1

 �þ u2j i f 2
 �� � ð8Þ

In this notation the above equation is akin to a Bell state which
then leads to a quick check of the correlation between the non-
separable DoF. Arbitrary rotation of the unit polarization vectors
umj i and spatial mode parity functions f n

 �ðm;n¼ 1;2Þ through
angles a and b respectively gives the correlation coefficients Cða; bÞ.
Rotation through angles a and b is carried out using the rotation
matrices:

ua
1

 �
ua
2

 �
 !

¼
cos ðaÞ � sin ðaÞ
sin ðaÞ cos ðaÞ

 !
u1j i
u2j i

 !
ð9Þ

f b1
 E
f b2
 E

0
B@

1
CA¼

cos ðbÞ � sin ðbÞ
sin ðbÞ cos ðbÞ

 !
f 1
 �
f 2
 �

 !
ð10Þ

Now the correlation between the polarization and mode parity
function DoF is given by the average [9],

Cða;bÞ ¼ eh jZuðaÞ � Zf ðbÞ ej i ð11Þ
where ZuðaÞ ¼ ua

1

 �
ua
1


 � ua
2

 �
ua
2


  and Zf ðbÞ ¼ f b1
 E

f b1
D � f b2

 E
f b2
D 

are the difference projections corresponding to polarization and
spatial mode parity DoF. Thus Cða; bÞ is given by a combination of
four joint projections,

Cða;bÞ ¼ P11ða; bÞþP22ða; bÞ�P12ða; bÞ�P21ða; bÞ ð12Þ
where

P11ða; bÞ ¼ eh j ua
1

 �
f b1
 E

f b1
D  ua

1


  ej i ¼ f b1
D  ua

1


  ej i
 2Fig. 1. Schematic diagram of the DWD. The two optic axes are oriented in 45° and

�45° to y-axis.
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