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A B S T R A C T

We conduct an extensive empirical study on short-term electricity price forecasting (EPF) to address the
long-standing question if the optimal model structure for EPF is univariate or multivariate. We provide
evidence that despite a minor edge in predictive performance overall, the multivariate modeling frame-
work does not uniformly outperform the univariate one across all 12 considered datasets, seasons of the
year or hours of the day, and at times is outperformed by the latter. This is an indication that combin-
ing advanced structures or the corresponding forecasts from both modeling approaches can bring a further
improvement in forecasting accuracy. We show that this indeed can be the case, even for a simple averaging
scheme involving only two models. Finally, we also analyze variable selection for the best performing high-
dimensional lasso-type models, thus provide guidelines to structuring better performing forecasting model
designs.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

There is no consensus in the existing literature on short-term
electricity price forecasting (EPF) as to the representation of the price
series (see Weron, 2014, for a recent review). Should the modeling
be implemented in a multivariate fashion, i.e., with separate but pos-
sibly interdependent models for each of the 24 (48 or more) load
periods, or within a univariate framework, where one large model is
constructed and the same set of parameters is used to produce one-
to 24-step ahead predictions for all load periods of the next day?

Surprisingly, though, there are very few and very limited stud-
ies in the EPF literature where the univariate and multivariate
frameworks are compared. Cuaresma et al. (2004) apply variants of
AR(1) and general ARMA processes (including ARMA with jumps)
to short-term EPF in the German EEX market. They conclude that
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specifications in which each hour of the day is modeled separately
(i.e., a multivariate framework) present uniformly better forecasting
properties than univariate time series models. More recently, Ziel
(2016a) notes that, when we compare the forecasting performance
of relatively simple time series models implemented either in a
multivariate or a univariate framework, the latter generally perform
better for the first half of the day, whereas the former are better
in the second half of the day. However, there has been no through,
empirical study to date, involving many fine-tuned specifications
from both groups. With this paper we want to fill the gap and pro-
vide much needed evidence. In particular we want to address three
pertinent questions:

1. Which modeling framework – multivariate or univariate – is
better for EPF?

2. If one of them is better, is it better across all hours, seasons of
the year and markets?

3. How many and which past values of the spot price process
should be used in EPF models?
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The remainder of the paper is structured as follows. In Section 2
we thoroughly discuss the univariate and multivariate modeling
frameworks, which are driven by different data-format perspectives.
This is a crucial, conceptual part of the paper, which sets ground
for the empirical analysis in the following Sections. In Section 3
we briefly describe the 12 price series used and present the area
hyperbolic sine transform for stabilizing the variance of spot price
data. In Section 4 we define 10 forecasting models represent-
ing eight model classes: (C1) the mean values of the past prices,
(C2) similar-day techniques, (C3) sets of 24 parsimonious, inter-
related autoregressive (AR) structures (so-called expert models),
(C4) sets of 24 univariate AR models, (C5) vector autoregressive
(VAR) models, (C6) sets of 24 parameter-rich, interrelated AR models
estimated using the least absolute shrinkage and selection operator
(i.e., lasso or LASSO; which shrinks to zero the coefficients of
redundant explanatory variables), (C7) univariate AR models and
(C8) univariate, parameter-rich AR models estimated using the lasso.
In Section 5 we evaluate their performance on the basis of the Mean
Absolute Error (MAE), the mean percentage deviation from the best
(m.p.d.f.b.) model and using two variants of the Diebold and Mariano
(1995) test for significant differences in the forecasting performance.
We also discuss variable selection for the best performing lasso-type
models. In Section 6 we wrap up the results and provide guidelines
for energy modelers and forecasters. Finally, in the Appendixes we
define the full set of 58 forecasting models considered in our empir-
ical study (for clarity of exposition in Section 5 we report detailed
results only for 10 representative models), provide formulas for
alternative representations of some of the models, and summarize
the predictive performance of all 58 models.

2. The univariate and multivariate modeling frameworks

Recall, that the day-ahead price series is a result of conducted
once per day (usually around noon) auctions for the 24 h of the
next day (Burger et al., 2007; Huisman et al., 2007; Weron and
Ziel, forthcoming). Consequently, the electricity prices Pd,1, . . . , Pd,24
for day d and hours 1, . . . , 24 are disclosed at once, and can
be regarded as a multivariate time series of the 24-dimensional
random vector Pd = [Pd,1, . . . , Pd,24]′. Next to the daily auction
argument there are two other practical reasons for the multivariate
modeling framework: (i) the demand forecasting literature, which
has generally favored the multivariate framework for short-term
predictions, and (ii) the fact that each load period (hour, half-hour)
displays a rather distinct price profile, reflecting the daily varia-
tion of demand, costs, operational constraints and bidding strategies
(Gianfreda et al., 2016; Karakatsani and Bunn, 2008; Shahidehpour
et al., 2002). On the other hand, the electricity prices can be
rewritten as one ‘high-frequency’ (hourly, half-hourly) univariate
time series: Pt = P24d+h = Pd,h, hence are prone to modeling
within a univariate framework. The univariate approach is more
popular in the engineering EPF literature, dominated by neural
network models (see Aggarwal et al., 2009, for a review), but has
its roots also in the traditional time series analysis of financial and
commodity markets.

Both approaches have their proponents. For instance, Cuaresma
et al. (2004), Misiorek et al. (2006), Zhou et al. (2006), Garcia–
Martos et al. (2007), Karakatsani and Bunn (2008), Lisi and Nan
(2014), Alonso et al. (2016), Gaillard et al. (2016), Hagfors et al.
(2016), Maciejowska et al. (2016), Nowotarski and Weron (2016),
Uniejewski et al. (2016), and Ziel (2016a), among others, advocate
the use of sets of 24 (48 or more) models estimated independently
for each load period, typically using Ordinary Least Squares (OLS). In
the neural network literature, Amjady and Keynia (2009a), Marcjasz
et al. (forthcoming) and Panapakidis and Dagoumas (2016), among

others, use a separate network (i.e., a different parameter set) for
each hour of the next day.

Studies where univariate statistical time series models are used
include Nogales et al. (2002), Contreras et al. (2003), Conejo et al.
(2005), Zareipour et al. (2006), Paraschiv et al. (2015) and Ziel et
al. (2015a), while papers where neural networks are put to work
include Rodriguez and Anders (2004), Amjady (2006), Pao (2007),
Amjady et al. (2010), Abedinia et al. (2015), Kim (2015), Dudek
(2016), Keles et al. (2016) and Rafiei et al. (2017), among others.

2.1. The multivariate modeling framework

The simplest, yet surprisingly often used structure for the 24-
dimensional price time series is a set of 24 univariate models:

⎧⎪⎪⎨⎪⎪⎩
Pd,1 = f1 (Pd−1,1, Pd−2,1, ...) + ed,1 −→ P̂d,1,

...
...

Pd,24 = f24 (Pd−1,24, Pd−2,24, ...) + ed,24 −→ P̂d,24,

(1)

where ed,h is the innovation (noise) term for day d and hour h,
and fh( • ) are some functions of the explanatory variables of the
past prices in the same load period. A commonly raised argu-
ment in favor of this approach is that it is simple to implement,
involves only a small number of parameters for each load period and
hence is computationally non-demanding. The downside, however,
is that the estimated set of models does not take into account the
potentially important dependencies between the variables across the
load periods. Still, by increasing the set of dependent explanatory
variables such interrelationships can be added. For instance, Gaillard
et al. (2016), Uniejewski et al. (2016) and Ziel (2016a) consider the
previous day’s price for midnight, i.e., Pd−1,24, as an explanatory
variable in each of the 24 single models. Formally such a set of 24
interrelated models can be written as:

⎧⎪⎪⎨⎪⎪⎩
Pd,1 = f1 (Pd−1,1, Pd−2,1, . . . , Pd−1,24, Pd−2,24, . . .) + ed,1 −→ P̂d,1,

...
...

Pd,24 = f24 (Pd−1,1, Pd−2,1, . . . , Pd−1,24, Pd−2,24, . . .) + ed,24 −→ P̂d,24,

(2)

which according to Chatfield (2000) and Diebold (2004) can be
regraded as a multivariate model, since the dependency structure is
interrelated.

It should be emphasized that both frameworks, defined by
Eqs. (1) and (2), make explicitly (or implicitly) assumptions on the
innovations for individual load periods. For instance, that for each
hour ed,h follows a normal distribution with zero mean, i.e., ed,h ∼
N
(
0,s2

h

)
. However, they do not assume anything about the joint

distribution of the innovations for different hours. To mitigate this
unwanted feature, a fully multivariate modeling framework may be
implemented which treats the price series as panel data:

⎡⎢⎢⎢⎣
Pd,1

...

Pd,24

⎤⎥⎥⎥⎦ = f

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣

Pd−1,1

...

Pd−1,24

⎤⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎣
Pd−2,1

...

Pd−2,24

⎤⎥⎥⎥⎦ , ...

⎞⎟⎟⎟⎠+

⎡⎢⎢⎢⎣
ed,1

...

ed,24

⎤⎥⎥⎥⎦ −→

⎡⎢⎢⎢⎣
P̂d,1

...

P̂d,24

⎤⎥⎥⎥⎦ .

(3)

The model structure may be identical to that in Eqs. (1)–(2), but
it allows for a joint estimation for all load periods, e.g., via multi-
variate Least Squares, multivariate Yule-Walker equations (as in this
paper) or maximum likelihood (Lütkepohl, 2005). Hence, there is
an explicit (or implicit) joint distribution assumption on the error
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