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a b s t r a c t

Extracting phase distribution from arbitrary phase-shifted fringe patterns, if possible, is very useful in

phase-shifting interferometry. The advanced iterative algorithm (AIA) is introduced and the windowed

Fourier ridges and least squares fitting (WFRLSF) is proposed. Both algorithms are sensitive to noise,

which limits their applications to almost perfect fringe patterns. The windowed Fourier filtering (WFF)

algorithm is proposed for both pre-filtering and post-filtering to suppress the noise. Simulation results

show that with the effective noise suppression, the phase error is reduced to less than 0.1 rad.

Experimental examples are also given for verification. The almost identical results produced by the AIA

and the WFRLSF suggest that both algorithms can be used for phase extraction with cross-validation.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Phase-shifting interferometry is a powerful technique for full-
field, accurate and non-contact measurements [1–6]. To extract
phase distribution from fringe patterns with known phase-shifts,
the accuracy of the phase-shifts is essential but often difficult to
be guaranteed [1–4]. Consequently error-compensating phase-
shifting algorithms were proposed, assuming that the phase-shifts
are around their nominal values [5,6]. This solution is straightfor-
ward and has been well accepted. An alternative solution is to
extract the phase distribution without knowing the phase-shift
values. One example is the advanced iterative algorithm (AIA)
proposed by Wang and Han [7]. The AIA evolved from Okada
et al.’s work [8] which was extended from Greivenkamp’s work
[9]. The AIA has attracted some research interests recently due to
its high effectiveness [10–12]. Another method called WFRLSF is
proposed in this paper. It first estimates phase-shifts by a
windowed Fourier ridges (WFR) algorithm [13] and then
estimates phase distribution by a least squares fitting (LSF) [7–9].

For the AIA, noise affects the convergence of iterations and
consequently the accuracy of the extracted phase. For the
WFRLSF, though the WFR algorithm is able to accurately estimate
the phase-shifts from noisy fringe patterns, the subsequently
extracted phase is still noisy. It will be seen that in both
algorithms, the phase error increases with noise level. To improve

immunity to noise, a windowed Fourier filtering algorithm (WFF)
[14–16] is proposed for both pre-filtering before phase extraction
and post-filtering after phase extraction. Simulation shows that
with the noise suppression, both the AIA and the WFRLSF produce
phase errors less than 0.1 rad. It will be observed, interestingly
and surprisingly, that the AIA and the WFRLSF give almost
identical results, though their principles are quite different. Thus
the WFRLSF, having no convergence problem, can serve as an
empirical way to show the convergence of the AIA which has not
been proven yet.

The contributions of this paper include

(i) The WFRLSF for phase extraction from arbitrary phase-
shifted fringe patterns is proposed;

(ii) The WFF which will be shown to be very effective as pre-
filtering and post-filtering for both the AIA and the WFRLSF is
proposed;

(iii) The WFRLSF can be used to show the convergence of the AIA
due to their very similar performances.

The rest of the paper is organized as follows. The AIA is
introduced in Section. 2. The WFF and the WFR are introduced in
Section 3. The WFRLSF is proposed in Section 4. Using the WFF to
improve the performances of the AIA and the WFRLSF is proposed
in Section 5. Simulated and experimental examples are given for
verification. Spatially non-uniform phase-shifts and high order
harmonics as error sources in phase extraction are discussed. The
paper is concluded in Section 6.
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2. Advanced iterative algorithm (AIA) [7]

The AIA introduced in this section is directly adapted from Ref.
[7] for completeness of this paper. The notations are similar to
those in [7] for consistency. A part of the AIA, Eqs. (4–5), will also
be used for the WFRLSF proposed in Section 4.

Phase-shifted fringe patterns can be written as follows:

fij ¼ AijþBij cosðjjþdiÞþnij; ð1Þ

where the subscript i=1, 2,y, M is used as a frame index and M is
the total frame number; the subscript j=1, 2,y, N is used as a
pixel index and N is the total pixel number; fij, Aij, Bij and nij are
fringe intensity, background intensity, fringe amplitude, and noise
of frame i and pixel j, respectively; jj is the phase value of pixel j;
and di is the phase-shift value of frame i.

Eq. (1) can be rewritten as

fij ¼ ajþbj cosdiþcj sindiþnij; ð2Þ

where aj=Aij, bj=Bij cosjj and cj=�Bij sinjj are assumed to be
constant in different frames. If the phase-shifts di are known, for
each pixel j, aj, bj and cj can be solved from Eq. (2) by the LSF, i.e.,
by minimizing the residual error

Ej ¼
XM
i ¼ 1

ðajþbj cosdiþcj sindi�fijÞ
2; ð3Þ

which leads to the following simplified calculation:
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ð4Þ

where the superscript �1 denotes the matrix inverse. The phase
can then be calculated as

jj ¼ tan�1ð�cj=bjÞ: ð5Þ

Similarly Eq. (1) can be rewritten as

fij ¼ a0iþb0i cosjjþc0i sinjjþnij; ð6Þ

where a0i ¼ Aij; b0i ¼ Bij cosdi and c0i ¼�Bij sindi are assumed to be
constant for all the pixels. If the phase values of jj are known, for
each frame i, a0i, b0i and c0i can be solved from Eq. (6) by the LSF, i.e.,
by minimizing the residual error

E0i ¼
XN

j ¼ 1

ða0iþb0i cosjjþc0i sinjj�fijÞ
2; ð7Þ

which leads to the following simplified calculation:
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ð8Þ

The phase-shifts can then be calculated as

di ¼ tan�1ð�c0i=b0iÞ: ð9Þ

Both phase values and phase-shifts are estimated by alter-
nately using Eqs. (4 and 5) and Eqs. (8 and 9), which is iterated
until a certain condition is satisfied [7]. This forms the AIA

algorithm. Its convergence is not theoretically proven. However,
the method works well especially when the noise level is very
low, which is evident from Ref. [7] and subsequent publications
[10–12].

3. Windowed Fourier transform [14–16]

In this section, the windowed Fourier ridges (WFR) and the
windowed Fourier filtering (WFF), two algorithms based on
windowed Fourier transform, are briefly introduced. They are
directly adapted from Refs. [14–16] for the completeness of this
paper. The notations are similar to those in [14–16] for
consistency. The WFR will be used in developing the WFRLSF,
while the WFF will be adopted to suppress noise in both the AIA
and the WFRLSF.

A windowed Fourier transform pair can be expressed as a
forward and an inverse transforms as follows:

Sf ðu; v; x;ZÞ ¼
Z 1
�1

Z 1
�1

f ðx; yÞg�u;v;x;Zðx; yÞdxdy; ð10Þ
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ð11Þ

where f(x, y) is an input fringe pattern; Sf(u, v;x,Z) is the wind-
owed Fourier spectrum of f(x, y); (x, y) and (u, v) are spatial
coordinates; (x,Z) is a frequency coordinate; the symbol * denotes
a complex conjugate operator; the windowed Fourier element
gu,v;x,Z(x, y) is a windowed harmonic that is spatially centered at
(u, v) and tuned to a frequency of (x,Z).

The WFR algorithm searches for a windowed Fourier element
which is the most similar to each portion of a fringe pattern
covered by the window. Consequently, frequencies of the fringe
pattern at (u, v) along x and y directions, ox(u, v) and oy(u, v), can
be determined as

½oxðu; vÞ;oyðu; vÞ� ¼
arg max

x;Z
jSf ðu; v; x;ZÞj ; ð12Þ

where arg max
x;Z means that the arguments x and Z which

maximize jSf ðu; v; x;ZÞj are taken as ox(u, v) and oy(u, v),
respectively. The local frequency [ox(u, v), oy(u, v)] is also called
the ridge location. Subsequently phase distribution can be
extracted from the ridge information:

jðu; vÞ ¼ anglefSf ½u; v;oxðu; vÞ;oyðu; vÞ�gþoxðu; vÞuþoyðu; vÞv:

ð13Þ

When the WFR is used to process a single fringe pattern, it should
be highlighted that

(i) The WFR gives results with sign ambiguity, i.e., if ox(u, v),
oy(u, v) and j(u, v) is a solution, so is �ox(u, v), �oy(u, v)
and �j(u, v);

(ii) The WFR does not give accurate estimation when both
|ox(u, v)| and |oy(u, v)| are low.

The WFF algorithm is another algorithm based on the wind-
owed Fourier transform, which assumes that the windowed
Fourier spectrum of noise in a fringe pattern permeates the entire
windowed Fourier domain with small spectrum coefficients. The
WFF algorithm hence filters a fringe pattern by thresholding its
windowed Fourier spectrum, which can be written as

f ðx; yÞ ¼
1

4p2
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Z 1
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ð14Þ
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