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Sensitivity analysis of full field methods for residual stress measurement
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Abstract

The hole drilling technique is a well known experimental method for residual stress investigation. This technique is usually used in

combination with electrical strain gauges but there is no reason to enforce this choice and other approaches, in particular some full-field

optical techniques, can be advantageously used. Since all these techniques give full field data, it becomes important to properly use this

redundant information content to increase the robustness and reliability of the analysis.

In this work, various well known approaches to the hole drilling/full-field data analysis will be investigated using a two-step approach.

In the first one, a sensitivity analysis will be performed on the simpler algorithms and then the reliability of the methods will be estimated

by Montecarlo analysis using a known displacement field as a reference.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The hole drilling method is a well-known technique for
residual stress analysis [1–7]. The ‘‘standard’’ version
consists in measuring the strain components produced by
drilling a flat-bottomed hole in the centre of a specifically
designed strain gauge rosette. Strain gauges are extremely
practical measuring devices, but the finite dimensions of the
sensitive elements impose several limitations on their use.
In fact, the acquired signal is obtained by integrating the
strains over the strain gauge surface, whereas it is
practically impossible to perform measurements in the
vicinity of the hole edge (which is actually the region where
deformation gradients are higher). Moreover, strain gauges
are particularly sensitive to off-centre drilling errors [8].
Full-field optical measurement techniques (moiré inter-

ferometry, speckle interferometry, holographic interfero-
metry and shearography) can overcome these limits as they
are able to acquire the whole displacement (or strain) field
along the sensitivity direction. The quantity of available
data, which largely exceeds the required minimum number
of three values, therefore poses the problem of their

effective utilization to exploit the intrinsic redundancy of
the data so as to reduce measurement errors.
Numerous approaches to solving this problem have been

proposed in the literature, the most well-known being the
measurement of three displacement components at a single
point [9] (repeated, if necessary, in different points),
measurement of a single component [10], Fourier analysis
of the displacement field around a circumference [11] and
the least squares fit of the displacement field [12].
In this work, we analyse the performance of the above

techniques in terms of accuracy and robustness to noise,
using known stress fields for the classical case of a thin
plate with through-hole and constant stress [13–16]. For
this purpose, we generated synthetic data fields which were
then perturbed by adding various levels of noise. The
resulting ‘‘experimental’’ data were then analysed using
the different algorithms and their results compared with
the expected values.
The final aim of the work is to determine the optimum

combination of experimental technology and analytical
methodology for measuring residual stress using optical
methods.

2. Analysis of some full field algorithms

The number of unknowns to be determined in the
residual stress problem is three (either sx, sy and txy or s1,
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s2 and W), so its solution simply requires knowing three
experimental values. The algorithms described in the
following differ in the quantities being measured and their
numerical treatment; however all of them can be described
using the same cylindrical reference system of Fig. 1. In this
system, the displacement field can be written, in a some-
what simplified form, as [10]

ur ¼ Aðsx þ syÞ þ B½ðsx � syÞ cosð2WÞ þ 2txy sinð2WÞ�,

uW ¼ C½ðsx � syÞ sinð2WÞ � 2txy cosð2WÞ�,

uz ¼ F ðsx þ sxÞ þ G½ðsx � syÞ cosð2WÞ þ 2txy sinð2WÞ�, (1)

where A . . .G are calibration coefficients depending on
material properties, geometric configuration and point
location only (note that the F parameter is zero in this case)

A ¼ r0=ð2EÞð1þ nÞr; B ¼ r0=ð2EÞ½4r� ð1þ nÞr3�,

C ¼ r0=ð2EÞ½2ð1þ nÞrþ ð1þ nÞr2�G ¼ ðnt=EÞr2,

where E is the Young module and r ¼ r=r0 is the
normalized distance, ratio of the distance r from the centre
of the hole and the hole radius r0.
The following points should be noted:

� Whatever solution algorithm is adopted, it should
(directly or indirectly) use the radial component. In
fact, by simple algebra, or considering the Mohr circle, it
is easy to show that if there is no radial component in
the experimental field (e.g. it uses a pure out-of-plane-
sensitivity data acquisition system), it is impossible to
determine the stress components, as the displacements
depend on the size of the Mohr circle but not on its
position.

� Apart from the specialized optical configuration de-
scribed in [17], it is not possible to directly measure the
radial strains/displacements. Thus these quantities have
to be estimated by combining two (or three) acquisitions
using different sensitivity vectors.

2.1. Nelson and McCrickerd algorithm (1986)

In 1986 Nelson and McCrickerd proposed using holo-
graphic interferometry to overcome certain limitations
inherent in strain gauges and grating interferometry [18].
Eq. (1) shows that radial deformation is the same for

points symmetrically located with respect to (WRT) the
hole centre. This makes it possible to determine radial
displacement in a simple way. In fact, the relation between
phase and displacement can be written, in the case of
holographic interferometry, as [10]

f ¼ k 	 u ¼ kxux þ kyuy þ kzuz, (2)

where k, the sensitivity vector, depends on the illumination
vector k1 and the observation vector k2: k ¼ k2 � k1, where
jk1j ¼ jk2j ¼ 2p=l, l being the wavelength of the laser
source.
Denoting with g and z the angles between the illumina-

tion vector and the X–Y plane and X axis, respectively
(Fig. 2), and with a and Z the corresponding quantities for
the observation vector, it is easy to show that k1 and k2 can
be written as (note that k2 depends on the point considered,
while k1 remains constant, provided the illumination beam
is collimated)

k1 ¼ �
2p
l

cos g cos z

cos g sin z

sin g
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l

� sin a cos Z

� sin a sin Z
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(3)

where a ¼ arctanðr=z0Þ, z0 being the z component of the
distance between the hole centre and the observation point.
Using (3) the sensitivity vector can be written as

k ¼ k2 � k1 ¼ �
2p
l

cos g cos z� sin a cos Z

cos g sin z� sin a sin Z

sin g� cos a

8><
>:

9>=
>;, (4)

which can be considered almost constant if the observation
point lies at some distance from the X–Y plane.
As is well known the interference fringe field is sensitive

to displacements in the sensitivity vector direction, so, in
this case, both the in-plane and out-of-plane displacements
contribute to its creation. To solve this problem the
authors suggest subtracting the phase data for two
symmetrical points WRT the hole centre. In fact, the out-
of-plane component is the same in these two points (so
their contribution is nullified when the phase values are
subtracted), whereas the radial components are opposed
(so they sum together).
Once the procedure for determining the radial displace-

ment ur is known, this quantity can be evaluated in three
different directions W, Wþ p=4 and Wþ p=2, where W, the
angle between the principal directions and the first
acquisition direction, is not yet known. In this way the
radial strain for each direction can also be calculated by
forward differences using the displacement in two neigh-
bouring points A and B located along a radius:
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Fig. 1. Reference configuration for hole drilling system. A cylindrical

reference system is used, with the Z axis coincident with the hole axis.
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