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a b s t r a c t

In this paper, we visualize the loss reserve runoff triangle as a spatially-organized data set. We apply
Gaussian Process (GP) regression with input warping and several covariance functions to estimate future
claims. We then compare our results over a range of product lines, including workers’ comp, medical
malpractice, and personal auto. Even though the claims development of the lines are very different,
the GP method is very flexible and can be applied to each without much customization. We find that
our model generally outperforms the classical chain ladder model as well as the recently proposed
hierarchical growth curve models of Guszcza (2008) in terms of point-wise predictive accuracy and
produces dramatically better estimates of outstanding claims liabilities.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Insurance is one of the few industries where the cost of the
product is not known when it is priced for sale. To determine the
rate for a policy, the insurer must predict the future claims from
that policy. To predict those future claims, insurers use past claims
from similar policies. Ideally, the most recently written policies
will closely match the future policies and should be prominently
included in the model. Unfortunately, the total cost of a policy
is not known immediately after policy expiration. Reporting lags,
litigation, settlement negotiation, and other adjustments to the
ultimate claims can all lengthen the time until the ultimate cost
of the policy is known.

Loss reserves represent the insurer’s best estimate of their
outstanding loss payments. These reserves include both incurred,
but not reported (IBNR) losses (losses incurred by the policyholder
during the policy period, but not yet reported to the insurer as of
the valuation date) and incurred, but not enough reported (IBNER)
losses (the insurer knows about these losses, but the predicted
ultimate costs as of the valuation date are often smaller than the
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actual ultimate losses). Properly estimating these ultimate losses
is important for future pricing and company valuation.

For comprehensive reviews on the prediction of loss reserves
and their associated variability, see Taylor (2012) and Wüthrich
and Merz (2008). In recent years, a variety of regression models
have been proposed for forecasting loss reserves; supplementing
a litany of deterministic and stochastic link ratio based mod-
els. Earlier work tends to build on parallels between link ratio
methods and certain types of regression (Barnett and Zehnwirth,
2000). Many authors have built upon this framework using mixed
models (Antonio and Beirlant, 2008), Bayesian models (de Alba
and Nieto-Barajas, 2008; Shi et al., 2012), and unique link func-
tions (Peters et al., 2009). Zhang and Dukic (2013) added copulas
to account for the correlation between various lines, while Shi
and Hartman (2016) account for those same correlations using a
Bayesian hierarchical model. However, a common criticism of link
ratio models and their regression-based derivatives is that they
tend to be heavily parameterized for a problemwith fewdegrees of
freedom (England and Verrall, 2002). To address this shortcoming,
interest in research on nonlinear regression approaches deviating
from traditional actuarial models has grown. Two broad categories
of nonlinear regressions can be considered, parametric models, or
those where the nonlinear relationship between covariates and
losses takes an explicit functional form, and non-parametric mod-
els, where a nonlinear relationship is defined more generally and
learned from the data.

The parametric class of nonlinear reserve models is well rep-
resented by Stelljes (2006), modeling incremental losses with
exponential curves, and later by Guszcza (2008) and Zhang et al.
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(2012) who forecast cumulative losses. The latter two papers allow
the intercept to vary by accident year using a hierarchical structure
andmodel the development lag effect withWeibull and lognormal
distributions. These two papers differ slightly as Guszcza (2008)
uses a maximum likelihood estimation (MLE) while Zhang et al.
(2012) use Bayesian estimation and consider serial correlation in
the errors. An unaddressed concern with nonlinear parametric
regressions is that the choice of functional form can drastically
affect ultimate reserve estimates, as observed in Guszcza (2008). In
the absence of concrete prior knowledge about the loss generating
process, these methods may produce poor results.

Though less popular than their parametric counterparts, non-
parametric nonlinear regressions have also been employed in
the literature. In a comprehensive review of stochastic reserving
methods England and Verrall (2002) introduce generalized addi-
tive models (GAM) with cubic regression splines as a method to
forecast losses; noting flexibility and the ability to reproduce ad
hoc adjustments to deterministic models as distinct advantages to
this approach when compared to parametric models. Extending
this methodology, Spedicato et al. (2014) use generalized ad-
ditive models for location, scale and shape (GAMLSS) to model
the conditional scale parameter as well as the location parame-
ter for a variety of distributions. However, the authors conclude
the methodology produces mixed results due to problems with
convergence, large differences in variability when compared to
standard models, and poor predictive accuracy when compared to
the best linear unbiased estimator (BLUE) chain ladder approach.

To improve upon existing approaches to loss reserve forecast-
ing, we propose a hierarchical Bayesian Gaussian process (GP)
regression with input warping similar to Snoek et al. (2014). GP
regression is a flexible nonparametric statistical/machine learning
method which provides a robust and smooth fit to a wide variety
of data types, structures, and distributions. We reserve a detailed
description of GP regression for Section 2.

Recently, Lopes et al. (2012) proposed using hybrid chain lad-
der/kernel machine (both support vector machines and GP regres-
sion) models for incurred but not reported claim reserve estima-
tion. This paper is the first to introduce GP regression to reserving
literature but not as a stand-alonemethodology. GP regressionwas
only used to adjust residuals from the chain ladder model with
the hopes of obtaining more accurate predictions and the authors
struggle to find an expression for a IBNR variance estimator.2

In reserve modeling, GP regression with input warping offers
several advantages over popular methods used in industry and
contemporary literature,

• Because it is a nonparametric method, the relationship be-
tween accident years, development lag, and losses is learned
from the data rather than being pre-specified as in paramet-
ricmodels. Nor is any post-hoc adjustment (as usedwith de-
terministic methods) necessary. Defining losses as a smooth
function of accident period and development lag is more
consistent with reality than the random intercept model
proposed in Guszcza (2008) and Zhang et al. (2012) and has
the added benefit of enabling interpolation/extrapolation
along both time dimensions.3

• Through its covariance function, GP regression naturally
models the dependence structure between losses across
both the accident period and development lag dimensions.

2 If the chain ladder estimate is to be considered fixed/deterministic
then Williams and Rasmussen (2006) chapter 2 section 2.7 provide solutions
for the predictive mean and variance under the GP model in Lopes et al. (2012).
3 Accident period may only be extrapolated to whole unit values (ex. year 1

to year 2) since losses will begin at 0 and accumulate for each period. Along the
development lag dimension, interpolation/extrapolation can be performed at any
continuous value.

Methods and concepts from spatial/geo-statistics can be
borrowed to visualize and make sense of this dependence
structure.

• GP regression is parsimonious, only requiring the estimation
of a few hyperparameters to learn potentially complex rela-
tionships present in the data. For example, it is possible to
fit GP models to incremental loss data.4 without relying on
external models or residual analysis as in Stelljes (2006) For
relatively simple covariance functions, GP hyperparameters
are easily to interpret and enable substantial posterior infer-
ence.

• GP regression models can be implemented efficiently and
easily though standard software, we use Stan (Team, 2017)
in this application, using Hamiltonian Monte Carlo (HMC)
with automatic tuning provided by the No-U-Turn (NUTS)
sampler (Hoffman and Gelman, 2014). This paradigm af-
fords a great deal of flexibility, allowing the practitioner to
easily adjust the details of the model to take an objective
stance or to incorporate prior assumptions based on pre-
vious experience. Parameter and process variability can be
measured exactly and directly rather than through asymp-
totic methods or bootstrapping. Finally, given reasonable
hyperprior elicitation, posterior computation using HMC is
more forgiving than classical methods for fitting non-linear
regressions.We experienced no problemswith convergence
when fitting GP regressions to reserve data.

• Input warping through hierarchical Bayes automates fea-
ture engineering and incorporates major non-stationary ef-
fects (Snoek et al., 2014).

In Section 2 we provide a brief overview of GP regression
and covariance functions.5 In Section 3 we present the intuition
behind our approach; viewing the problem as a geostatistician.
Section 4 details our proposedmodel. Section 5 applies ourmethod
to several sets of paid loss data from the NAIC Schedule P and
compares predictive accuracy with the popular chain ladder and
hierarchical growth curve models.6 We conclude in Section 6 by
suggesting potential modifications extensions to our GP reserve
models for future research.We include an appendixwith Stan code
to implement a GP regression with input warping. Stan is freely
available allowing practitioners to take our code and implement
these models on their own data.

2. Gaussian process regression

Given a trainingmatrix X ∈ Rn,p and an associated target vector
y ∈ Rn, a GP regression can be applied to learn an unknown
function f (x) (where x ∈ Rp is any row vector in X) which models
the target observations y. In most applications it is assumed the
observations deviate from f (x) according to some noise parameter
but this need not be the case if the process is truly noise-free (ex:
output from a deterministic computer simulation model). Before
moving onwe formalize the definitions of stochastic processes and
GPs for reference.

Definition 1 (Stochastic Process). DefiningΩ as a sample space, F
a set of events, and P a function assigning probabilities to events,
a stochastic process is a sequence of random variables defined on
the probability space (Ω,F,P) and ordered with respect to a time
index t , taking values in an index set S (the state space).

4 This paper focuses on modeling cumulative losses, but the methodology ex-
tends naturally to incremental losses.
5 For a farmore thorough overview of GP regression and covariance functionswe

recommend Williams and Rasmussen (2006).
6 It was our intention to include the additive models of Spedicato et al. (2014)

for comparison to GP regression however, as the authors warned, we experienced
convergence issues and generally poor results.
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