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a b s t r a c t

The study of worst-case scenarios for risk measures (e.g., Value-at-Risk) when the underlying risk (or
portfolio of risks) is not completely specified is a central topic in the literature on robust riskmeasurement.
In this paper, we tackle the open problem of deriving upper bounds for strictly concave distortion risk
measures on moment spaces. Building on early results of Rustagi (1957, 1976), we show that in general
this problem can be reduced to a parametric optimization problem. We completely specify the sharp
upper bound (and correspondingmaximizing distribution function)when the firstmoment and any other
higher moment are fixed. Specifically, in the case of a fixed mean and variance, we generalize the Cantelli
bound for (Tail) Value-at-Risk in that we express the sharp upper bound for a strictly concave distorted
expectation as a weighted sum of the mean and standard deviation.

© 2018 Elsevier B.V. All rights reserved.

0. Introduction

In this paper, we study upper bounds on the risk of a port-
folio with respect to a (strictly) concave distortion risk measure
when the underlying risk is not fully specified in that only some
information on its moments is available. This problem is relevant
for several reasons. First, a concave distortion risk measure is
coherent (Artzner et al., 1999) and thus has all properties that
‘‘good’’ risk measures are typically expected to have. Moreover,
if in addition to the coherency of a law-invariant1 risk measure,
one also requires comonotone additivity, then concave distortion
risk measures are the only ones that are admissible (Kusuoka,
2001). Second, measuring the risk of portfolios is at the center of
insurance activities. When the marginal distribution functions of
the portfolio components and their dependence structure are both
known, the risk of the portfolio can be assessed numerically, for
instance by usingMonte-Carlo simulation. Inmost cases, however,
it cannot be expected that full information on the dependence
structure is available, and various stakeholders such as investors
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1 There is an increasing interest in the study of risk measures that account for

background risk; see e.g. Mainik and Schaanning (2014) and Sordo et al. (2018).

and regulators could be interested in the worst-case scenario for
the portfolio (i.e., when the risk measure attains its highest value).
In this regard, we note that there is a rich literature on finding
bounds for the Value-at-Risk (VaR) of a portfolio under the as-
sumption that all marginal distribution functions are known, but
the dependence is either unknown or only partially known.2 In this
paper, however, we do not fix the marginal distribution functions,
but derive bounds under the sole knowledge of some moments
of the portfolio loss (e.g. based on portfolio statistics) without
specification of the marginal distribution functions. Moreover, we
consider the class of strictly concave distortion risk measures, and
the VaR does not belong to this class.

The best-known concave distortion risk measure is the Tail
Value-at-Risk (TVaR), also called Expected Shortfall in the lit-
erature. This measure quantifies the expected value of the risk
given that it is greater than its Value-at-Risk (measured at the
same probability level). In fact, TVaR is the smallest coherent risk
measure that is greater than the Value-at-Risk (VaR), which is
the most frequently used risk measure in risk management and
supervision practice, but which fails to be subadditive and thus
lacks coherency. Effectively, the VaR is a particular quantile of the

2 Papers relevant here include Rüschendorf (1982), Denuit et al. (1999a), Kaas et
al. (2009),Wang andWang (2011),Wang et al. (2013), Embrechts et al. (2013, 2014,
2015a), Hofert et al. (2017), Puccetti et al. (2016, 2017), Bernard et al. (2015, 2017)
and Rüschendorf and Witting (2017).
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distribution, whereas TVaR3 is more focused on the right tail of the
distribution in that it measures the expected loss, conditionally on
the loss being greater than VaR. Moment bounds for VaR (which
are intimately connected to distributional bounds) and TVaR have
already been studied in the insurance literature by authors such
as Kaas and Goovaerts (1986), Denuit et al. (1999b), De Schep-
per and Heijnen (2010), Hürlimann (2002, 2008), Goovaerts et
al. (2011), Bernard et al. (2015, 2016) and Tian (2008). Specifi-
cally, Hürlimann (2002) finds analytical bounds for VaR and TVaR
under knowledge of themean, variance, skewness and kurtosis. An
elementary derivation of bounds on VaR can be found in Bernard
et al. (2016). In this regard, we point out that one cannot expect
that there exists a riskmeasure (i.e., a single number) that captures
all characteristics of risk and provides a complete picture of the
risky portfolio (i.e., a random variable). For example, Hürlimann
(2002) studies TVaR for various two-parameter distribution func-
tions with fixed mean and variance by varying the loss probability
and argues that TVaR does not always properly reflect the increase
in (tail) risk from one distribution to another. Moreover, risk mea-
sures appear in various contexts, such as riskmanagement (McNeil
et al., 2015), pricing (Wirch and Hardy, 1999), capital allocation
(Dhaene et al., 2012) and supervision (Danielsson et al., 2001),
and a risk measure that is suitable for one purpose might be not
appropriate in another context; see also Dhaene et al. (2008) for
a warning against the blind use of coherent risk measures as well
as Belles-Sampera et al. (2014a, b), Frittelli et al. (2014), Bellini et
al. (2014), Kou and Peng (2016) and Cai et al. (2017) for recent
proposals of risk measures.

In this paper, we study bounds for any strictly concave distor-
tion risk measure when k, not necessarily consecutive, moments
of the underlying risk are known. This problem can be cast as an
extended version of an optimization problemconsidered in Rustagi
(1957, 1976). This author considers the optimization of a certain
integral when the first moment and second moment are known
and provides some necessary conditions its solution must satisfy.
Our first contribution is to show that optimization of concave distor-
tion riskmeasures is compatiblewith this integral formulation and
to provide, for an arbitrary sequence of moments, the necessary
conditions a solution has to satisfy. In this regard, Rustagi (1957,
1976) claims that in certain cases the necessary conditions he
derives lead to complete specification of the solution, but a proof
is missing and appears to be non-trivial; we provide a proof in
Section 2.2. Our second contribution is to completely specify the
maximizing distribution function (worst-case scenario) when the
mean and any other higher moment are known and to provide
an algorithm to obtain it. As a third contribution, we derive, in the
specific case of fixed mean and standard deviation, a Cantelli like
formula4 in that we are able to express the worst-case distorted
expectation as aweighted sumof themean and standard deviation.
Such a formula is of potential interest for robust portfolio opti-
mization. Specifically, Ghaoui et al. (2003) deal with the problem
of finding a portfolio that optimizes the worst-case VaR when
the distribution of returns is only partially known (only mean
and covariance matrix are available). In their analysis, the Cantelli
bound is crucial in that it essentially allows reformulation of their
optimization problem as a mean–variance optimization problem à
la Markowitz. Using the generalized version of the Cantelli bound,
this approach to robust portfolio selection can be extended to any
concave distorted expectation. Finally, our fourth contribution is to
obtain useful (although non-sharp) bounds for the general case.

3 There are various proofs that demonstrate subadditivity of TVaR; see Embrechts
et al. (2015b) and references herein.
4 The Cantelli bound expresses worst-case VaR as a weighted sum of (known)

mean and standard deviation.

1. Problem formulation

In this paper, we mainly consider distribution functions with a
bounded domain. Hence, after rescaling, we consider them on the
unit interval [0, 1]. The restriction to boundeddomainsmay appear
as a limitation of the setting but is actually often appropriate, in
particular in a risk management context within financial institu-
tions. In this context, one is typically concerned only with losses,
not by gains; i.e., a lower bound of zero applies. The maximum
loss a bank can suffer on its mortgage portfolio is bounded by
the total amount that is lent. The upper limit to the financial loss
for which the insurance company underwrites is generally fixed
by the contract or determined through reinsurance techniques;
moreover, insurers have limited liability (up to their capital) to
meet claims.

Denote by F a set of distribution functions on [0, 1] for which
k ∈ N0 moments are given,

F =
{
F is a cdf on [0,1]

⏐⏐⏐⏐ ∫ 1

0
xidF (x) = ci, i ∈ I

}
:= F((ci)i∈I), (1)

where I ⊂ N0 and card(I) = k. Note that in general F may
correspond to a set of distribution functions with any k moments
fixed, not necessarily the first k ones, and not necessarily starting
with the mean. In the remainder of the paper, we assume that
F contains at least two different elements (and hence infinitely
many, since F is convex).

A distortion risk measure of a random variable X having cumu-
lative distribution FX is defined as

Hg (X) =
∫
∞

0
g(1− FX (x))dx−

∫ 0

−∞

[1− g(1− FX (x))] dx, (2)

where g is a distortion function, i.e., an increasing function on [0, 1]
with g(0) = 0 and g(1) = 1. Note that Hg (X) depends solely on the
distribution function FX (law-invariance), and in what follows we
also write Hg (FX ) instead of Hg (X). Furthermore, we assume that
g is strictly concave and twice differentiable, implying that Hg is a
coherent risk measure; see e.g., Dhaene et al. (2006). The impor-
tance of distortion risk measures with concave distortion function
(henceforth called concave distortion riskmeasures) is highlighted
by the fact that this class coincides with the class of coherent
risk measures that are law-invariant and comonotone additive
(Kusuoka, 2001). Examples of concave distortion riskmeasures are
the power distortion riskmeasure (g(x) = xα, α ∈ (0, 1)), the dual-
power distortion riskmeasure (g(x) = 1−(1−x)β , β ∈ (1,∞)) and
theWangdistortion riskmeasure (g(x) = Φ(Φ−1(x)+Φ−1(p)), p ∈
(0.5, 1)).

In this paper, we focus on the problem of determining the dis-
tribution function in F that yields maximum (concave) distorted
expectation, i.e., we consider the optimization problem

sup
F∈F

Hg (F ). (3)

When only one moment is specified, say the ith one with value
ci, it is easy to show that the solution is obtained by a discrete
distribution function F that is concentrated on 0 and 1 and has
ith moment equal to ci. To see this, observe that F dominates all
other admissible distribution functions in the sense of stop-loss
order (since F crosses all other distribution functions exactly once
from above and has the biggest possible mean, namely ci) and it is
well-known that concave distortion risk measures are consistent
with stop-loss order (see e.g., Dhaene et al. (2006)). Hence, the case
k = 1 is not interesting and,moreover, since little distributional in-
formation is used in the optimization, this case is not very useful in
practice in that it leads towide bounds. Therefore, in the remainder
of the paper we consider only the case in which k ⩾ 2.
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