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a b s t r a c t

We apply Banach Contraction Principle to approximate a vector Ψ of ruin probabilities in regime-
switching models. A Markov chain is interpreted as a ‘switch’ that changes the amount and/or wait time
distributions of claims. The insurer has a possibility to adapt the premium rates in response. An associated
risk operator L is proven to be a contraction on a properly chosen complete metric space while Ψ is
shown to be the unique fixed point of L within this space. Thus, by iterating L on any of its points, we
can simultaneously approximateΨ and control the error of approximation. Numerical examples confirm
high accuracy of the resulting procedure.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Several aspects of regime-switching risk processes have been
studied recently (see e.g. Wang et al. (2016), Landriault et al.
(2015), Chen et al. (2014), Guillou et al. (2013)). Although numer-
ous monographs and papers deal with embedding the Cramér–
Lundberg model into Markovian environment, see e.g. Asmussen
and Albrecher (2010), the actuarial literature related to a regime-
switching Sparre Andersen model is rather scarce. Since the topic is
of great interest in applications, we will focus on it in this paper.
Our aim is threefold:

1. We will provide a universal method of approximating the
ultimate ruin probabilityΨ(u) which is a vector of functions
of the initial surplus u in this case.

2. The approximation error will be measured globally, with
respect to all u ⩾ 0 simultaneously.

3. To achieve the above aims, we will provide a new method-
ology based on Banach Contraction Principle.

Banach Contraction Principle is a powerful tool to solve integral
and differential equations, giving a constructivemethod to approx-
imate their solutions with a controlled precision (see e.g. Kilbas et
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al. (2006)). However, its applications to evaluate ruin probabilities
do not seem to be immediate. A simple cause is that an associated
risk operator L, given by (5), has usually infinitely many fixed
points (see Remark 3.1 for details). In this paper, wewill show how
to make it a contraction on a properly defined complete metric
space ⟨Rs, dr⟩ given by (11). As a result, a vector of ultimate ruin
probabilities is shown to be the unique fixed point of L in ⟨Rs, dr⟩.
What is more, we can approximate the ultimate ruin probabilities
with controlled precision by iterating L on every starting point
from ⟨Rs, dr⟩.

To be more precise, let all stochastic objects considered in the
paper be defined on a probability space (Ω,F,P). Let us denote by
N the set of all positive integers. LetR denote the real line. SetN0

=

N∪{0},R+ = (0, ∞),R0
+

= [0, ∞) andR+ = (0, ∞]. Let a random
variable Xk denote the amount of the kth claim, T1 – the moment
when the first claimappears and Tk – the timebetween the (k−1)th
claim and the kth one. We will denote by An the moment when
the nth claim appears. With this notation, An = T1 + · · · + Tn
under the convention that A0 = 0. Let a random variable Ck denote
the insurance premium rate during the time interval [Ak−1, Ak).
Let {Ik}k∈N0 be a homogeneous Markov chain with a finite state
space S = {1, 2, . . . , s} such that the probabilities pi = P(I0 = i)
are positive for every i ∈ S. A transition matrix P =

(
pij
)
i,j∈S is

such that the probabilities pij = P
(
Ik+1 = j|Ik = i

)
are non-

negative for all i, j ∈ S. The jump from Ik−1 to Ik can change
the distribution of Tk and/or Xk at the moment Ak only, so we
will interpret {Ik}k∈N0 as ‘switches’. We assume that the insurance
premium rate Ck = c(Ik−1), where c is a known positive function
defined on S. The conditional distribution of X1 (respectively T1),

https://doi.org/10.1016/j.insmatheco.2018.02.005
0167-6687/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.insmatheco.2018.02.005
http://www.elsevier.com/locate/ime
http://www.elsevier.com/locate/ime
http://crossmark.crossref.org/dialog/?doi=10.1016/j.insmatheco.2018.02.005&domain=pdf
mailto:leslaw.gajek@p.lodz.pl
mailto:marcin.rudz@p.lodz.pl
https://doi.org/10.1016/j.insmatheco.2018.02.005


46 L. Gajek, M. Rudź / Insurance: Mathematics and Economics 80 (2018) 45–53

given the initial state i and the state j at the moment A1, will be
denoted by F ij (respectively Gij), see Section 2 for details.

Let a non-negative real u denote the insurer’s surplus at 0 and
Un = U(n, u) — at the moment An, respectively. The surplus process
(risk process) {Un}n∈N is defined by

Un = u −

n∑
k=1

(Xk − c(Ik−1)Tk) . (1)

The time of ruin

τ = τ (u) = inf{n ∈ N : U(n, u) < 0} (2)

is the first time when the insurer’s surplus falls below zero (here
inf∅means∞). The conditional probability that τ (u) is not greater
than n, given the initial state i, considered as a function of the initial
surplus u, is called the probability of ruin at or before the nth claim.
Let us denote it by Ψ i

n(u) and write

Ψn(u) = (Ψ 1
n (u), . . . , Ψ s

n (u)) . (3)

The conditional probability that τ (u) is finite, given the initial state
i, is called the infinite horizon ruin probability (or ultimate ruin
probability). Let us denote it by Ψ i(u) and write

Ψ(u) = (Ψ 1(u), . . . , Ψ s(u)) . (4)

Let R denote the set of all measurable functions defined on
non-negative reals and taking values in [0, 1] almost everywhere.
We will use the symbolRs to denote the set {(ρ1, . . . , ρs) : ρi ∈ R
for every i ∈ S}. The elements of Rs will be written in bold.

We call L : Rs
→ Rs the risk operator if

Lρ(u) = (L1ρ(u), . . . , Lsρ(u)), u ⩾ 0, (5)

where, under the convention that
∫

∞

a means
∫
(a, ∞),

Liρ(u) =

s∑
j=1

pij

∫
∞

0

∫
(0, u+c(i)t]

ρj(u + c(i)t − x)dF ij(x)dGij(t)

+

s∑
j=1

pij

∫
∞

0

∫
∞

u+c(i)t
dF ij(x)dGij(t), i ∈ S . (6)

An important relationship betweenΨn+1,Ψ1 and the risk operator
L is given by the following equality:

Ψn+1(u) = LΨn(u) = LnΨ1(u), u ⩾ 0 (7)

(see Theorem 3.1 for details). Let us denote

M i(r) =

s∑
j=1

pij

∫
∞

0

∫
∞

0
e−r(c(i)t−x)dF ij(x)dGij(t), i ∈ S, r ∈ R .

(8)

Positive constants r10 , . . . , r s0 will be called adjustment coefficients
if

M i(r i0) = 1, i ∈ S . (9)

A sufficient condition for the existence of the adjustment vector
(r10 , . . . , r s0) is given in TheoremA.1. For a fixed r ∈ (0, mini∈S{r i0}),
let us define the following norm:

∥ρ∥r = max
i∈S

{

∫
∞

0
|ρi(u)|erudu}, ρ ∈ Rs . (10)

As usual, the correspondingmetric is defined by dr (ρ1, ρ2) = ∥ρ1
−

ρ2
∥r .
Lemma 2.2 shows that the following subset of Rs:

⟨Rs, dr⟩ = {ρ ∈ Rs
: ∥ρ∥r < ∞} (11)

is a complete metric space. By Theorem 2.1, L is a contraction on
⟨Rs, dr⟩. Consequently,

Ψ = LΨ ,

by Banach Contraction Principle. Additionally, consecutive itera-
tions of L on any ρ ∈ ⟨Rs, dr⟩ converge, in the sense of ∥ · ∥r , to Ψ

and

∥Lnρ − Ψ∥r ⩽
[M∗(r)]n

1 − M∗(r)
∥Lρ − ρ∥r , (12)

where M∗(r) = maxi∈S{M i(r)} (see Theorem 3.2 for details).
Moreover, (12) implies that

max
i∈S

{

∫
∞

0
|Lni ρ(u) − Ψ i(u)|du} ⩽ inf

r∈(0, r∗0 )

{
[M∗(r)]n

1 − M∗(r)
∥Lρ − ρ∥r

}
,

where r∗

0 = min{r i0 : i ∈ S} and Lni ρ is the ith coordinate of Lnρ
(see Corollary 3.2 for details). Numerical Examples 3.2–3.3 show
that our methodology can lead to precise approximations of Ψ.

The one-dimensional non-switching Sparre-Andersen risk
model enables to treat by the same theory (see e.g. Thorin (1975,
p. 88)) absolutely continuous as well as discrete distributions of
the inter-arrival time. This idea applied to a regime-switching
framework leads to a fairly general risk model in which one can
approximate ruin probabilities Ψ no matter what time – con-
tinuous or discrete – is considered. Under specified assumptions
(see discussion in Gajek and Rudź (2017)), the above regime-
switching Sparre-Andersenmodel generalizes several continuous-
and discrete-time risk models. Let us recall just a few of them:
a regime-switching model with exponentially distributed inter-
arrival times (cf. Example 3.1), a discrete time regime-switching
model (see Example 3.2), a non-switching discrete time risk
model (see e.g. Example 3.3), the Sparre Andersen model (see
e.g. Sparre Andersen (1957)) and the classical non-switching
Cramér–Lundberg model (see e.g. the below mentioned papers by
Politis (2006) or Gordienko and Vázquez-Ortega (2016)).

For a survey of Markov switching models, we refer the
reader to Frühwirth-Schnatter (2006). Markov additive pro-
cesses are studied in Asmussen (2003) or Feng and Shimizu
(2014) among others. Asmussen’s (2003, p. 310) monography
contains also a convenient simulation scheme for these mod-
els. The Markov-modulated Poisson process can be found in
numerous articles and monographs, for instance, in Reinhard
(1984), Asmussen (1989) or Asmussen and Albrecher (2010). Es-
timation of the parameters of a Markov-modulated insurance loss
process is discussed in Guillou et al. (2013). Enikeeva et al. (2001)
propose a method of continuity analysis of ruin probabilities with
respect to variation of parameters governing risk processes and
illustrate it by Markov modulated risk models as well as by the
Sparre Andersen model. A risk model with a Markovian arrival
process is investigated in Li et al. (2015). Xu et al. (2017) investigate
optimal investment and reinsurance policies for an insurer under
aMarkov-modulated financial market. Wang et al. (2016) consider
a multi-dimensional regime-switching risk model in which the
surplus process for each class of insurance business is assumed to
follow a compound Cox risk process. Landriault et al. (2015) pro-
pose a drawdown-based regime-switching Lévy insurance model
in which the underlying drawdown process is used e.g. to model
an insurer’s level of financial distress over time. Chen et al. (2014)
investigate a second order integro-differential system of equations
for the expected discounted dividend payments in a Markov-
modulated jump–diffusion risk model with randomized observa-
tion periods and threshold dividend strategy.

Taylor (1976) was perhaps the first researcher who used
the operator approach to evaluate ruin probabilities. Since then,
this approach has been further investigated and developed by
Gajek (2005) and Gajek and Rudź (2013, 2017). In the classical
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