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a b s t r a c t

We introduce a pricing framework for a guaranteed annuity option (GAO) where both the interest and
mortality risks are correlated. We assume that the short rate and the force of mortality follow the Cox–
Ingersoll–Ross (CIR) and Lee–Carter models, respectively. Employing the change of measure technique,
we decompose the pure endowment into the product of the bond price and survival probability, thereby
facilitating the evaluation of the annuity expression.With the aid of the dynamics of interest andmortality
processes under the forward measure, we construct an algorithm based on comonotonicity theory to
estimate the quantiles of survival probability and annuity rate. The comonotonic upper and lower bounds
in the convex order are used to approximate the annuity and GAO prices and henceforth avoiding the
simulation-within-simulation problem. Numerical illustrations show that our algorithm gives an efficient
and practical method to estimate GAO values.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Recent financial innovations in the market included the cre-
ation of many insurance products with option-embedded features
such as guaranteed annuity options and equity-linked annuities;
seeHardy (2003). These products depend on bothmortality and in-
terest rate risks. The previous methodology in evaluating this kind
of products affected by these two risks is oversimplified. In the past
literature, the interest rate is modelled as a stochastic process and
themortality rate is deemed deterministic; see Ballotta andHaber-
man (2006, 2003). The underestimation ofmortality risk could lead
to huge losses for many insurance companies. Majority of research
papers do not deal with the correlation between mortality and
interest rate risks. It is more desirable to have a valuation setting
that allows for the dependence between these two risk factors. In
Liu et al. (2014), a valuation pricing framework covers the case
of correlated mortality and interest risks, albeit the interest rate
model is restricted to Vasiček to obtain analytic pricing solution
of a guaranteed annuity option (GAO). Liu et al. (2013), on the
other hand, proposed comonotonicity-based method to improve
the efficiency of GAO pricing computation.

With the improvement of approaches in modelling mortality
risks, more stochastic mortality models with greater flexibility,
were put forward; see Cairns et al. (2009), Lee and Carter (1992),
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and Lin and Liu (2007), amongst others. The pricing of annuity
products has become more complicated as the complexity of the
mortality model has also increased. We aim to construct a model
with greater capability in fitting with the historical data very
well, i.e., capturing ably the mortality evolution whilst attaining
tractability for ease of implementation. However, building such a
model that captures adequately both behavioural properties could
be challenging. When a complicated mortality model is adopted,
the computational burden is heavy and the ‘‘simulation-within-
simulation’’ problem poses a difficulty in the implementation. Our
goal is to develop a computationally efficient algorithm to evaluate
the GAO price.

GAO valuation with regime-switching but under independent
risk factors is put forward in Gao et al. (2015b); the pricing un-
der regime-switching with correlation structure involving Vasiček
interest-rate dynamics and mortality rate is given in Gao et
al. (2015a); and the setting of GAO capital requirements using
moment-based method is shown in Gao et al. (2017). This paper
could be viewed as an extension of the framework constructed
in Liu et al. (2014) in which their model setting is limited only
to Vasiček and Ornstein–Uhlenbeck-based models for the interest
and mortality rates, respectively, due to the models’ combined
mathematical tractability. Nonetheless, we know that both risk
processes have more complicated dynamics requiring a combined
modelling framework with more capabilities. So, to bring further
modelling development, we consider the CIRmodel for the interest
rate process which is mean-reverting and its nonnegative feature
provides a realistic description of the evolution of the interest rate.
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Also, the well-studied Lee–Carter mortality model is adopted in
this investigation. As pointed out in Lee and Carter (1992), their
mortality model performs superbly in fitting the empirical data.
However, the price of GAO for this choice of combined interest
and mortality models, with correlation structure, does not yield a
closed-formpricing solution so that the simulation techniquemust
be used. To aid the price computation, the comonotonicity lower
and upper bounds are calculated to give an approximation of the
GAO value.

We note that this paper and that of Deelstra et al. (2016) exhibit
similarities in GAO pricing. These similarities include the (i) frame-
work of correlated interest and mortality risks, (ii) examination of
the influence brought about by the risks’ dependence structure on
GAO prices, (iii) employment of the change-of-measure technique,
and (iv) short-term interest rate governed by the Cox–Ingersoll–
Ross (CIR) model.

Nonetheless, this article also has certain features that depict
distinctive differences from Deelstra et al. (2016). Such features
justify our paper’s unique position relative to the current literature,
and its contributions by all means complement those in Deelstra
et al. (2016). We highlight the differences as follows. (i) We as-
sume themortality rate evolves according to the Lee–Carter model
whilst in Deelstra et al. (2016), both mortality and short rates
follow the multi-CIR or Wishart models. The Lee–Carter model ar-
guably performs better in fitting mortality rates as this model was
originally created to model mortality risks; in particular, it takes
into account both the age and time factors. In contrast, the model
in Deelstra et al. (2016) considers only the time factor. (ii) In this
paper, the interest and mortality rates are governed by different
models vis-à-vis the assumption in Deelstra et al. (2016). Thus, in
our case, explicit solutions for the annuity rates and GAO prices are
unattainable. But, with the aid of the concept of comonotonicity
bounds, we get closed-form pricing approximations for annuity
and GAO prices. (iii) The procedure to calculate our survival prob-
ability and price estimates is deemed efficient with the general
Monte-Carlo simulation method as benchmark. Our numerical re-
sults are enhanced further by a systematic analysis that ascertains
how sensitive the GAO prices are to the perturbations in various
parameter values.

This paper is organised as follows. Section 2 presents the for-
mulation of the pricing framework along with the assumptions
of the interest and mortality rate modelling set ups. In Section 3,
we describe the change of measure method and determine the
dynamics of the interest and mortality rate processes under the
forward measure. In Section 4, the comonotonicity bounds are
introduced and they are used in turn to evaluate the survival
probability, annuity rate, and GAO price. Section 5 provides some
numerical examples to illustrate the advantages of our proposed
technique. Finally, we give some concluding remarks in Section 6.

2. Valuation framework

2.1. Cox–Ingersoll–Ross (CIR) model

Under a risk-neutral measure Q , the short-term interest rate rt
is governed by the CIR model, i.e., rt follows the dynamics

drt = a(b − rt )dt + σ
√
rtdW 1

t , (1)

where a, b and σ are positive constants andW 1
t is a standard Brow-

nian motion on some filtered probability space (Ω,Rt , {Rt},Q ).
The square root term in the diffusion coefficient of Eq. (1) together
with an appropriate choice of parameters imply that the interest
rate is always positive. The respective mean and variance of rt
conditional on Rs are given by

E[rt |Rs] = rse−a(t−s)
+ b(1 − e−a(t−s))

and

Var[rt |Rs] = rs
σ 2

a

(
e−a(t−s)

− e−2a(t−s))
+
σ 2b
2a

(
1 − e−a(t−s))2.

Under the CIR setting, the price of a $1 time-T zero-couponbond
at time t has an exponential affine representation given by

B(t, T ) = EQ
[
e−

∫ T
t rudu

⏐⏐⏐Rt

]
= e−A(t,T )rt+D(t,T ), (2)

where

A(t, T ) =
2(e(T−t)h

− 1)
2h + (a + h)(e(T−t)h − 1)

,

D(t, T ) =
2ab
σ 2 log

(
2he(a+h)(T−t)/2

2h + (a + h)(e(T−t)h − 1)

)
and h =

√
a2 + 2σ 2.

2.2. Lee–Carter model

We assume that the force of mortality µx,t , for a life aged x at
time t , follows the Lee–Carter model, which consists of two age-
specific factors and a time-varying index. That is,

logµx,t = αx + βxkt + ϵx,t (3)

with constraints∑
t

kt = 0,
∑
x

βx = 1,

where αx and βx are age-specific constants, kt is a time-varying
index, and ϵx,t is an error term. In Eq. (3), kt satisfies the stochastic
differential equation

dkt = cdt + ξdZt , (4)

where c and ξ are constants (ξ > 0) and Zt is a standard Brownian
motion on (Ω,Mt , {Mt},Q ).

The Lee–Carter model parameters in Eq. (3) have intuitive in-
terpretations: αx is the average mortality rate over time that de-
scribes the differences between ages; kt represents the changes of
mortality rate over time, which is a stochastic process; βx explains
at which ages mortality rate declines rapidly as influenced by kt ;
and ϵx,t is a random disturbance.

Given the force of mortalityµx,t , we get the survival probability

Sx(t, T ) = exp
(

−

∫ T

t
ux+s,sds

)
.

Since µx,t is a stochastic process, the survival probability is
also a random variable. To price an insurance product, we need to
determine the conditional expectation of the survival probability,
which is

Px(t, T ) := E
[
exp

(
−

∫ T

t
ux+s,sds

)⏐⏐⏐⏐Mt

]
. (5)

We assume that Zt is correlated with W 1
t with dependence

structure

dZtdW 1
t = ρdt,

where ρ is the correlation coefficient between the interest rate and
mortality rate processes. Generating Zt could be performed using
the relation

Zt = ρW 1
t +

√
1 − ρ2W 2

t ,

where W 2
t is a standard Brownian motion independent ofW 1

t .
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