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a b s t r a c t

In this paper, we consider Sarmanov’s multivariate discrete distribution as counting distribution in two
multivariate compound models: the first model assumes different types of independent claim sizes (cor-
responding to, e.g., different types of insurance policies), while in the second model, we introduce some
dependency between the claims (motivated by the events that can simultaneously affect several types of
policies). Since Sarmanov’s distribution can join different types of marginals, we also assume that these
marginals belong to Panjer’s class of distributions and discuss the evaluation of the resulting compound
distribution based on recursions. Alternatively, the evaluation of the same distribution using the Fast
Fourier Transformmethod is also presented, with the purpose to significantly reduce the computing time,
especially in the dependency case. Bothmethods are numerically illustrated and compared from the point
of view of speed and accuracy.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Because it allows for a flexible dependency structure that
can join different types of marginals, Sarmanov’s (1966) fam-
ily of distributions has been recently used in applied studies
in various fields. In insurance and finance, this distribution has
been considered in connection with premiums calculation by
Hernández-Bastida et al. (2009) and Hernández-Bastida and
Fernández-Sánchez (2013), with ruin theory by Yang andHashorva
(2013), tomodel bivariatemotor claims by Bahraoui et al. (2015) or
to approach the capital allocation problem by Bargès et al. (2009),
Cossette et al. (2013), Hashorva and Ratovomirija (2015), Vernic
(2016, 2017), Ratovomirija (2016) and Ratovomirija et al. (2017).
Even if the just mentioned papers deal with the continuous form
of Sarmanov’s distribution, the flexibility of this class also allows
for a discrete form, see, e.g., Danaher and Smith (2011), Hofer and
Leitner (2012). In this paper, we shall use the discrete Sarmanov
distribution to model the random vector of number of claims in
a multivariate collective model. The motivation of this choice is
based on its more flexible dependence structure compared with
previous choices like, e.g., the classical multivariate Poisson distri-
bution, and on the fact that it also allows for recursive evaluation
procedures of the resulting compound distribution. Moreover, in
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Bolance and Vernic (2017), Sarmanov’s trivariate distribution pro-
vided a good fit to a real trivariate count data set.

Recall the univariate collective model used for the aggregate
claims of a portfolio,

S =

N∑
j=0

Xj, (1)

where N is the number of claims with probability mass function
(pmf) denoted by p, X0 = 0, while X1, X2, . . . are independent,
identically distributed (i.i.d.) nonnegative discrete claim amounts
with pmf h, and independent of N . The distribution of S is called
compoundwith counting distribution p and severity distribution h.
This univariate collective model can be extended to a multivariate
setting generated by, e.g., m ≥ 2 different types of claims (corre-
sponding to, e.g., different types of insurance policies, like home
and auto insurance; see, e.g., Bolance and Vernic, 2017) as

(S1, . . . , Sm) =

( N1∑
l=0

X1l, . . . ,

Nm∑
l=0

Xml

)
, (2)

where the pmf of the random vector consisting of the (depen-
dent) claim numbers (N1, . . . ,Nm) is still denoted by p,

(
Xjl
)
l≥1 are

i.i.d. nonnegative discrete claim amounts of type j with pmf hj,
independent of the claim numbers; by convention, Xj0 = 0, 0 ≤

j ≤ m. A usual simplifying assumption is that the different types
of claim amounts are also independent of each other; however, we
shall also introduce a certain form of dependency between them.
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Since the evaluation of compound distributions is extremely
important for insurance companies, variousmethods have been in-
vestigated in the literature, fromwhichwe first recall the recursive
method. In the univariate setting, recursions have been intensively
investigated (see Sundt and Vernic, 2009 for an overview and for
references); however, in the multivariate setting, due to the com-
plexity of the models, there is still room for research, see Part II of
the book Sundt and Vernic (2009), and also the recent approaches
of Jin and Ren (2014) and Robe-Voinea and Vernic (2017, 2016a).
In this paper, we present recursive formulas for the model (2)
under the assumptions of Sarmanov counting distribution with
independent claims and, also, for an extension of the same model
that includes a common shock-type dependency between claims
(i.e., when some event causes claims on more than one type of
policy).

Thoughproviding exact values, the recursive evaluation of com-
pound distributions can be time consuming, especially in the mul-
tivariate setting. This is whywe shall also consider the Fast Fourier
Transform (FFT) method for our models; among the alternative
approximate techniques, this method became of interest due to
its ability to significantly reduce the computing time (see Jin and
Ren, 2014 for the bivariate case andRobe-Voinea andVernic, 2016b
for the trivariate case). The development of FFT functions into the
mathematical software also contributed to the rise of interest in
this technique. However, since the FFT method is an approximate
one, special attention must be paid to the specific errors, the most
important one being the aliasing error.

Therefore, this paper is structured as follows: in Section 2 we
present some preliminaries consisting of notation, useful formu-
las, known recursive formulas for compound distributions, and
Sarmanov’s multivariate discrete distribution. Section 3 is divided
in two parts: in the first part, we consider the model (2) with
independent claims and Sarmanov’s counting distribution, and we
discuss both a recursive and a FFT based evaluation technique
of the corresponding compound distribution when the distribu-
tion of each random variable (r.v.) number of claims belongs to
Panjer’s class. In the second part of Section 3 we introduce some
dependency (of common shock-type) between the claim sizes of
model (2) and discuss the same two methods under the same
assumptions on the counting distribution. In Section 4we illustrate
the methods for the model with dependence and compare the
results regarding the accuracy and computing time. The paper ends
with a conclusions section.

2. Preliminaries

2.1. Notation, definitions and useful formulas

In the following, for simplicity, we let 1, n = {1, 2, . . . , n} and
we denote a vector by a bold-face letter and its elements by the
corresponding italic with a subscript indicating the number of the
element, i.e., X = (X1, . . . , Xn) or x = (x1, . . . , xn); moreover, 0
denotes the 0-vector, 1 the vector consisting of only ones, while
x − y and x ≥ y are considered componentwise.

For a discrete function f : N → R, we introduce the following
transforms

Laplace transform : Lf (t) =

∞∑
n=0

f (n) e−nt ,

ψf (t) =

∞∑
n=0

f (n) tn, ϕf (t) =

∞∑
n=0

f (n) eint .

When f is a discrete pmf, the last two transforms are, respectively,
the probability generating function (pgf) and the characteristic
function (cf); if, instead of a distribution, we deal with a discrete

r.v., say X , we shall index the corresponding transforms with the
name of the r.v., hence we recall

LX (t) = E
[
e−tX] , ψX (t) = E

[
tX
]
, ϕX (t) = E

[
eitX
]
.

In the multivariate setting, when f : Nm
→ R, the definitions of

the transforms ψ and ϕ become

ψf (t) =

∑
n≥0

f (n)
m∏
j=1

t
nj
j , ϕf (t) =

∑
n≥0

f (n)
m∏
j=1

einjtj .

For two discrete functions f , h : N → R, we recall the definition
of their convolution f ∗ h, as

(f ∗ h) (x) =

x∑
y=0

f (y) h (x − y) , x ∈ N.

If, in particular, f and h are pmfs, f ∗ h represents the pmf of a
sum of two independent discrete r.v.s having distributions f and
h. The n-fold convolution of the function h is recursively defined
by h∗n

= h∗(n−1) ∗ h, n ≥ 1, with h∗1
= h and, by convention,

h∗0 (x) = 1 if x = 0 and 0 otherwise. Moreover, it is easy to see
that the property ψf ∗h = ψfψh well known for distributions, also
holds for discrete functions, hence it follows that ψh∗n = (ψh)

n.
The convolution can also be defined in the multivariate setting

for two functions f , h : Nm
→ R by

(f ∗ h) (x) =

x∑
y=0

f (y) h (x − y) , x ∈ Nm.

We also define the compounding operation of two discrete func-
tions p, h : N → R by

(p ∨ h) (x) =

∞∑
n=0

p (n) h∗n (x) , x ∈ N. (3)

An easy calculation yields ψp∨h (t) = ψp (ψh (t)). In the particular
case when p and h are pmfs, p ∨ h represents the compound
distribution with counting distribution p and severity distribution
h, corresponding to model (1). Similarly, in the multivariate case,
under the assumption that the

(
Xjl
)
l≥1 are independent of the

(Xkl)l≥1,∀j ̸= k, we can write the compound distribution of model
(2) as

(p ∨ h) (x) =

∞∑
n1=0

...

∞∑
nm=0

p (n)
m∏
j=1

h
∗nj
j

(
xj
)
, x ≥ 0, (4)

which can also be used as the definition of the compounding
operation of the discrete functions p : Nm

→ R and h : Nm

→ Rm. In this case also, it can be proved that ψp∨h (t) =

ψp
(
ψh1 (t1) , . . . , ψhm (tm)

)
.

We consider the following definition of the discrete Fourier
transform (DFT) f̃ of them-variate function f defined on the integer
values xj = 0, 1, . . . , rj − 1,with rj ∈ N∗, j = 1,m,

f̃ (z) =

r1−1∑
x1=0

...

rm−1∑
xm=0

f (x) exp

⎧⎨⎩−2π i
m∑
j=1

xjzj
rj

⎫⎬⎭ ,
zj = 0, . . ., rj − 1, j = 1,m,

its inverse being given by

f (x) =
1∏m
j=1 rj

r1−1∑
z1=0

...

rm−1∑
zm=0

f̃ (z) exp

⎧⎨⎩2π i
m∑
j=1

xjzj
rj

⎫⎬⎭ ,
xj = 0, . . . , rj − 1, j = 1,m.

The DFT is the base of the FFT method that computes extremely
fast the DFT of a discrete function, therefore having important
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