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a b s t r a c t

In this article, systematic errors that arise from different implementations of digital image correlation

(DIC) techniques are analyzed. In particular, we investigate the influence of the adopted correlation

function, the interpolation order, the shape function and the subset size on the derived displacements.

These errors are estimated using numerically deformed images that were obtained by imposing finite

element (FE) displacement fields on an undeformed image yielding plastic deformation of the specimen.

This FE procedure simulates realistic experimental heterogeneous deformations at various load steps. It

is shown that DIC is able to reproduce these displacements up to a satisfactory level if conscious choices

in the above-mentioned implementations are made.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Digital image correlation (DIC) offers unique opportunities for
exploring full-field displacements and strain measurements in
experimental mechanics. Indeed, DIC has shown to be an ideal
tool to, e.g., identify the mechanical material behavior through
inverse modeling [1,2] and to study the deformation character-
istics of a wide range of materials [3–5].

In a first step of the experiment, a speckle pattern is usually
attached to the specimen surface. The assumption that no cracks
in this speckle structure appear during the deformation process is
a fundamental prerequisite of the technique. Next, the DIC
algorithm numerically compares two digital images of the speci-
men surface in the undeformed and deformed states, yielding
displacement fields with sub-pixel accuracy. This sub-pixel
registration process is one of the major challenges of DIC.
Accordingly, the past two decades have resulted in the develop-
ment of a number of DIC techniques in order to improve on this
sub-pixel accuracy. Some DIC algorithms rely on the intensity
interpolation [6–8], others on Newton–Raphson iteration [9,10],
curve-fitting or interpolation of the correlation coefficients [11,12],
optical flow method [13,14], complex spectrum [15], genetic and
neural network methods [16,17] or the center of mass estimation
of the correlation peak [3].

In this paper, we compute the sub-pixel displacements
following the so-called subset-based method as described in

Refs. [6,9,10]. In view of flexibility and in particular the possibility
to freely implement additional features, we developed our own
correlation software platform ‘‘MatchID’’. The validation of this
code is performed in two ways. First, we test the ability of our
software to reproduce a priori known rigid body displacements.
A comparison to a commercial DIC system Vic 2D [18] is made.
Next, we study two realistic complex experiments: an uni-axial
tensile test on a perforated tensile specimen and a bi-axial tensile
test on a perforated cruciform specimen. Reference images are
numerically deformed by imposing finite element (FE) displace-
ment fields. These are obtained by the commercial software
package Abaqus [19], simulating the uni-axial and bi-axial tensile
tests at various load steps resulting in substantial plastic
deformation. Accordingly, we can validate our correlation predic-
tions by comparing them to the well-known displacement fields
at the FE nodes. In addition, we investigate the influence of the
adopted correlation function, the interpolation order, the shape
function and the subset size.

To our knowledge, this article is the first report of systematic
errors in DIC in a realistic situation with large heterogeneous
deformation regions. Previously, rigid body and quadratic dis-
placement fields were the subject of investigation in Refs.
[10,20–24], whereas Ref. [25] simulated uni-axial tension on a
homogeneous specimen. On the other hand, in Ref. [26] a
heterogeneous specimen is used, but only to study the accuracy
of DIC related to the geometry of the speckle pattern.

We are well aware that additional errors may be introduced by
the numerical deformation process. Care has been taken, however,
in constructing the FE model such that the obtained displacement
fields were independent from the element mesh, i.e. the element
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size was sufficiently small that a further refinement of the mesh
would result in the same values for displacements. It is the goal of
this work, however, to check different implementations of the
correlation algorithm, not to test the absolute accuracy of the
subset-based method.

The outline of this article is as follows. In Section 2 we present
the DIC formalism. Our results are included in Section 3. We
conclude in Section 4.

2. Formalism

In a subset-based method, a matching between two speckle
patterns is accomplished by considering a pixel and its neighbor-
hood in the undeformed image f and searching the same subset in
the deformed image g, adopting a maximization routine for a
similarity function. In general, the origin of an ðx; yÞ coordinate
system is located at the upper-left corner of f ðx; yÞ. Assign ðxsc ; yscÞ

as the coordinates of the center pixel of a ð2N þ 1Þ � ð2N þ 1Þ
subset in the image f ðx; yÞ, with N a positive integer number.
Typical similarity functions are the cross-correlation coefficient
rCC and the sum-of-squared-differences correlation coefficient
rSSD, defined as

rCC ¼
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relates coordinates in the reference image f to the corresponding
coordinates in the second image g through
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with Dx ¼ x� xsc and Dy ¼ y� ysc .
The way in which the subset can deform during the correlation

process is defined by the number of parameters entering Eq. (4).
Considering only u and v, one reduces the problem to a rigid body
one. In case also the first-order partial derivatives are taken into
account, the general form of an affine transformation is retrieved.
This latter accounts for rigid body motion (translation and
rotation), shear and normal straining. Next, adding a term DxDy

yields a similar expression as the four node bilinear Lagrange
interpolation function and allows the mapping onto an irregular
quadrangle. Finally, second-order terms can be included in the
shape function. In Ref. [27] it is stated that by accounting for these
higher order gradients, the first order gradients and the displace-
ment fields can be measured more accurately.

The purpose is now to find the parameter smax that maximizes
the correlation coefficients of Eqs. (1), (2), or equivalently
minimizes C ¼ 1� r. Developing C into a second-order Taylor
polynomial at a point s in the vicinity of the correlation peak, the

maximum can be found at

smax ¼ sþ Ds, (5)

where the step Ds reads as

Ds ¼ �ðr2CÞ�1
ðrCÞ. (6)

Eqs. (5) and (6) are implemented in a Levenberg–Marquardt
algorithm to iteratively find smax.

In order to solve Eq. (6), gray value and gray value derivatives
must be evaluated at noninteger pixel locations. Here, we adopt
bilinear and bicubic polynomial interpolators. In Ref. [21] it is
shown that in particular the transition from bilinear to bicubic
order heavily improves on the accuracy. In addition, Ref. [21]
introduces cubic and quintic B-spline interpolators, but a detailed
discussion on this would fall beyond the scope of this work.

In Ref. [20] an additional approximation for the Hessian
entering Eq. (6) is introduced. This approximation applies to the
sum-of-squared-differences correlation coefficient rSSD of Eq. (2)
and reads as
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Further on, the results obtained via Eq. (7) will be labeled as
approximate-sum-of-squared-differences ðrASSDÞ.

3. Results

The goal of this paper is to study systematic errors in DIC
introduced by the adopted correlation function, the interpolation
order, the shape function, subset size and so on, by using
numerically deformed images simulating realistic plastic defor-
mation with a large degree of heterogeneity. Before embarking on
the study of those effects, however, we first validate our code by
checking its ability to reproduce a priori known rigid body
displacements.

3.1. Rigid body translation

Numerical simulations of rigid body translation are performed
according to Refs. [21,22]. In particular, to safeguard the shifted
images against phase or amplitude corruption, we apply a Fourier
filter expð�i0:05pnÞ on the initial undeformed manually gener-
ated speckle pattern displayed in the left panel of Fig. 3. This filter
corresponds to a shift of 0.05 pixels between successive images,
with n referring to the number of the image. The simulated image,
with a well-known rigid body displacement of n � 0:05 pixels, can
then be compared to the undeformed image via DIC software.

Fig. 1 displays the difference between the imposed uimp and the
mean DIC umean horizontal components and their corresponding
standard deviations for sub-pixel displacements ranging from 0 to
2 pixels. The mean values umean are calculated using 8000 ð200�
400Þ points per image. A subset size of 19� 19 is adopted as
displayed in the left panel of Fig. 3. The results are obtained via
bicubic interpolation, the cross-correlation coefficient and affine
transformation shape functions. Identical settings were adopted
for the commercial Vic2D software, except for the correlation
function which corresponds to the sum-of-squared-differences
one. We observe that both results are in good agreement. Indeed,
the prescribed sub-pixel displacements are reproduced with at
least 0.04 pixel accuracy. For an elaborated discussion on the
origin of the sinusoidal shape, the impact of the interpolation
function on the systematic errors and the improvement of the
accuracy, we refer to Ref. [21].
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