International Journal of Production Economics 201 (2018) 26-40

journal homepage: www.elsevier.com/locate/ijpe

Contents lists available at ScienceDirect

International Journal of Production Economics

Exact and heuristic methods to solve the parallel machine scheduling R

problem with multi-processor tasks

Lingxiao Wu, Shuaian Wang

Check for
updates

Department of Logistics and Maritime Studies, The Hong Kong Polytechnic University, Hung Hom, Hong Kong

ARTICLE INFO ABSTRACT

Keywords:
Scheduling

Parallel machine
Multi-processor tasks
Branch and bound
Tabu search

This paper studies a special parallel machine scheduling problem where some tasks require more than one ma-
chine to process, known as the Parallel Machine Scheduling Problem with Multi-processor Tasks. Two mathe-
matical models and several theoretical properties are proposed for the studied problem. To solve this problem,
this paper develops an exact branch and bound algorithm and a heuristic tabu search algorithm. A series of
numerical experiments are conducted to test the performance of these solution methods. The computational re-
sults show that the solution methods are effective and efficient in solving the problem with different sizes.

1. Introduction

Parallel machine scheduling problems consist of assigning and
sequencing a set of tasks on a set of machines. One of the core assump-
tions made in classical parallel machine scheduling problems is that each
task needs to be processed on exactly one machine at a time. However,
this assumption is insufficient to handle many problems arising from
today's production realities. Namely, tasks in some scheduling problems
require more than one machine to process, and we call such problems the
multi-processor task scheduling problems (Blazewicz et al., 1986). There are
a large number of industrial applications where multi-processor task
scheduling problems occur. For instance, (1) in diagnosable micropro-
cessor systems, a task must be processed by at least two processors at the
same time (Krawczyk and Kubale, 1985); (2) in semiconductor circuit
design workforce planning, a design project may need a group of people
(Chen and Lee, 1999), (3) in the quay crane scheduling problem of
container terminals, a ship requires more than one crane to handle
(Trkoullar et al., 2014) and (4) in parallel batch jobs scheduling problems
of grid computing environments, a computing task may run on several
processors that work in parallel (Switalski and Seredynski, 2015).

This paper studies a Parallel Machine Scheduling problem which al-
lows tasks to be processed on more than one machine. The considered
objective in our work is to optimize the makespan (the latest completion
time of all tasks). In this paper, we use the three-field notation, «|f|y
which is introduced by Graham et al. (1979) for parallel machine
scheduling problems. In this notation: (1) the first field o specifies the
machine environment, where P represents identical, Q uniform, and R

* Corresponding author.
E-mail address: wangshuaian@gmail.com (S. Wang).

https://doi.org/10.1016/j.ijpe.2018.04.013

unrelated parallel machines, (2) the second field p denotes the job
characteristics, and the third field y denotes the objective function. Ac-
cording to Drozdowski (1996)'s classification, this problem can be
denoted by P|sizej‘Cmax, where P represents parallel machine, size; de-
notes the number of machines required by task j and Cnax indicates that
the objective is to optimize the makespan.

This paper deals with the P\sizej|CmaX problem, and the main contri-
bution includes:

e This paper theoretically analyzes the P\sizej|Cmax problem and pre-
sents formal formulations. Several theoretical properties along with
two different mixed integer programming models of the considered
problem are proposed.

To solve problems with real-world sizes, a branch and bound (B & B)
algorithm with five efficient lower bounds and two fathoming criteria
is proposed. For problems with even larger scales, we develop a tabu
search (TS) method.

Numerical experiments involving 700 instances are conducted.
Computing results indicate that the proposed solution methods can
obtain high-quality solutions for the P|sizej|Cmax problem with
different sizes in relatively short computational time.

This paper is organized as follows. The next section gives a review of
related studies. In Section 3, we formally state the P}sizej|Cmax problem
and present several properties for the optimal schedule of the problem.
Two different mixed integer programming models for the problem are

Received 19 September 2017; Received in revised form 4 February 2018; Accepted 17 April 2018

Available online 27 April 2018
0925-5273/© 2018 Published by Elsevier B.V.

mailto:wangshuaian@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijpe.2018.04.013&domain=pdf
www.sciencedirect.com/science/journal/09255273
http://www.elsevier.com/locate/ijpe
https://doi.org/10.1016/j.ijpe.2018.04.013
https://doi.org/10.1016/j.ijpe.2018.04.013
https://doi.org/10.1016/j.ijpe.2018.04.013

L. Wu, S. Wang

formulated in Section 4. A branch and bound method is proposed in
Section 5. In Section 6 we introduce a tabu search algorithm. The per-
formances of the proposed models and algorithms are examined in Sec-
tion 7 by a series of computational experiments. Finally, our findings are
summarized in Section 8.

2. Literature review

Studies of the P\sizej}Cmax problem were motivated by research in
computer systems, such as fault-tolerant systems (Krawczyk and Kubale,
1985). Lloyd (1981) is among the first who studied the P|sizej|Crax
problem. In his paper the problem in which all tasks share equal pro-

cessing time, P)sizej, pj=1 ‘Cmax, where p; represents processing time is

studied and it was shown that the general P‘sizej., pi=1 ‘Cmax problem is
NP-complete. The author also demonstrated that the performance bound
of list scheduling for solving the P‘sizej, pi=1 ‘Cmax problem is bounded

by (2m— k)/(m — k+ 1), where m is the number of machines and k is the
largest number of machines required by one task. Blazewicz et al. (1986)
considered the preemptive and nonpreemptive parallel machine sched-
uling problems with multiprocessor tasks. They proposed two
polynomial-time algorithms with the complexity of O(n) to two problems
where each task requires either 1 or k machines to process (size; € {1,k},

where k is integer and k < m). One problem is the P‘si;zej e {1,k},pj =

1’Cmax problem and the other can be denoted by the Plsize; € {1,k},

pmin|Crax problem in which pmn implies that tasks are preemptive.
Computational complexity of the P|sizej|Cmax problem was examined by
Du and Leung (1989). Their study showed that for m = 2,3, the
P|siz«v3j{Cmax problem can be solved in pseudopolynomial time but the
problem becomes NP-hard in the strong sense for each m > 5. Blkadek
et al. (2015) studied the differences between contiguous schedules and
non-continuous schedules of the P}sizej|CmaX. In contiguous schedules,
indices of the processors assigned to a task must be a sequence of
consecutive numbers while in non-continuous schedules indices of the
processors assigned to a task can be arbitrary. They proved that deciding
whether such difference exists for a P|sizej }Cmax instance is NP-complete
and provided bounds on the difference between the length of two
schedules. Besides the parallel machine setting, there are some studies
that tackle machine scheduling problem with multi-processor tasks in the
flow shop environment (e.g., Chou (2013); Hidri (2016)).

As for the solution methods of the P}sizej | Cmax problem, exact solution
methods can be found for some special cases of the problem, for example,
when all the tasks share the same processing time or there are only two
different types of machine requirements (Blazewicz et al., 1986), when
tasks have various ready times and require either one or all machines
(Blazewicz et al., 2003), or when only two or three machines are involved
(Du and Leung, 1989; Chen and Lee, 1999). When the number of ma-
chines is fixed and not a parameter of the problem, Amoura et al. (2002)
proposed a polynomial time approximation scheme for the problem
Prm|sizej|Cmax, Where Pm means that the number of identical machines
(m) is fixed. When it comes to the general P{sizej}Cmax problem, to the
best of our knowledge, the only exact method was proposed by Blkadek
et al. (2015). The authors developed a simple branch and bound (B & B)
algorithm to solve the P|sizej|Cmax. The algorithm searches the solution
space by enumerating all possible permutations of tasks. Partial permu-
tations of tasks which represents sequences of completed tasks are
expanded step by step adding undone tasks. For each newly generated
partial solution, only one simple lower bound (the makespan of the
partial solution) is used in the algorithm to determine the validity of the
partial solution. Using a cluster of 30 PCs, the algorithm was reported to
be able to deliver optimal solutions for instances with up to 11 tasks.
Several approximation methods have been proposed to solve the

27

International Journal of Production Economics 201 (2018) 26-40

problem. Lin and Chen (1994) obtained a heuristic algorithm based on
the well-known largest processing time first scheduling, LPT rule. The per-
k(k+1
ED) where k

equals the largest number of machines required by each task. A similar

formance bound of this algorithm is proved to be 1k —

approximation method for the P|size]-|Cmax problem was developed by Li
(1999). The method was shown to have a performance guarantee of %.
Later on, Johannes (2006) proved that no approximation algorithm for
the P|sizej\Cmax problem can provide with a performance guarantee
better than 3, unless P = NP. The study also demonstrated the perfor-
mance guarantee of any list-scheduling algorithm for the P}sizej|Cmax
problem should be no less than 2. Switalski and Seredynski (2015) pro-
posed an evolutionary metaheuristic algorithm called the generalized
extremal optimization (GEO) to solve a machine scheduling problem
with multi-processor tasks. In their study, each machine is defined to
have a batch of processors that can work in parallel, and different ma-
chines may have different numbers of processors. Tasks with different
processor requirements are scheduled among these machines (each task
can only be assigned to one machine). Instances with up to 500 tasks and
48 machines are solved and compared with the genetic algorithm (GA).
The computational results showed that the proposed GEO outperforms
the GA for most of the tested instances.

For a comprehensive understanding of this problem, refer to the
studies of Drozdowski (1996), Lee et al. (1997), Brucker (2006) and
Leung (2004).

The P\sizej|CmaX problem has wide-range industrial applications and
has been studied by a number of scholars. In this study, we analyze
several properties of the optimal solution of the P\sizej|C,m1X problem,
formulate two different programming models and propose an exact
branch and bound (B & B) method and a tabu search (TS) heuristic to
solve the problem. Numerical experiments show that the proposed al-
gorithms are effective and efficient to solve the P\sizej |Cmax problem with
different sizes.

3. Problem description

This section first gives a formal description of the parallel machine
scheduling problem with multi-processor tasks, and then presents several
properties of an optimal schedule to this problem.

This problem can be described as follows: assume there is a set N =
{1,2,...,n} of n tasks to be processed by the set M = {1,2,...,m} of m
identical machines. All the tasks are available and all the machines are
ready to work from time t = 0. Each machine can process at most one
task at a time, and each task j needs to be processed by size; arbitrary
machines working in parallel (size; is integer and 1 < size; <m) in a
continuous period of p; units of time (p; is integer and p; > 1). Pre-
emption is not allowed. The objective is to find a schedule that produces
the minimum makespan (Cpax).

The optimal schedule of the P|sizej|Crax problem has several prop-
erties, which can help decrease the search space for the solution algo-
rithms. The first property examines the effectiveness of List Scheduling
(LS) rule for the considered problem. List Scheduling rule assigns the
earliest available machines to each task in a given sequence.

Theorem 3.1. There exists an optimal schedule for the P\sizej | Cmax problem
where machines are assigned to tasks by the List Scheduling rule.

Proof. Let § denote a schedule of all tasks in our considered problem. In
addition, we assume in schedule 5, C(9); is the completion time of task j and
Crmax(6) is the makespan. Since Cpax (1) > Cmax(62) implies C(61)j >C (52)1
for at least one j, the objective function Cmax(6) is a regular function of 6.
Further, for any scheduling problem with a regular objective function, there
exists an optimal schedule that is generated by the List Scheduling rule
(Schutten, 1996).]

The second property specifies the sequence of certain tasks in an

Download English Version:

https://daneshyari.com/en/article/7355097

Download Persian Version:

https://daneshyari.com/article/7355097

Daneshyari.com

https://daneshyari.com/en/article/7355097
https://daneshyari.com/article/7355097
https://daneshyari.com

