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Droplets with colloidal biological suspensions evaporating on substrates with defined wetting properties
generate confined environments for initiating aggregation and self-assembly processes. We describe
smart micro- and nanostructured surfaces, optimized for probing single droplets and residues by
synchrotron radiation micro- and nanobeam diffraction techniques. Applications are presented for Ac-
IVD and P-amyloid (1-42) peptides capable of forming cross-f3 sheet structures. Complementary
synchrotron radiation FTIR microspectroscopy addresses secondary structure formation. The high
synchrotron radiation source brilliance enables fast raster-scan experiments.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The evaporation of droplets of colloidal biological suspensions
results in various types of patterns depending on the nature of
surface interactions [1]. Indeed, coffee-ring type residues are formed
on wetting surfaces [2]. More complex patterns are observed on
superhydrophobic surfaces (SHS) ranging from spherical to collapsed
coffee-ring type residues depending on the solute concentration [3].
The formation of these “confined environments” is due to convective
flow and diffusion mediated mass transport to the droplet interface
resulting in the formation of gelated layers [4] which are at the origin
of aggregation and self-assembly processes. Microscopic evidence for
such processes can be obtained by probing droplets or residues by X-
ray micro- and nanobeam scattering techniques at high-brilliance
synchrotron radiation (SR) sources [3]. Wide-angle X-ray scattering
and small-angle X-ray scattering techniques (summarized here as
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micro X-ray diffraction: pXRD) in combination with raster-scan
probing reveal structural features from atomic to macroscopic scales
[3,5-7]. Spectroscopy probes with raster-scan capability, such as
Fourier transform infrared microspectroscopy (pFTIR), can provide
complementary information.

This text will review methodological advances in fabricating str-
uctured substrates with tailored wetting capabilities, optimized for
PXRD raster-scan probing. The use of such substrates will be dem-
onstrated for selected short peptides capable of forming nanofibrillar
cross-f sheet phases [8]. We will also discuss PFTIR experiments
addressing secondary structures formed during peptide self-assembly.
All experiments reported were performed at the European Synchrotron
Radiation Facility (ESRF), a state-of-the-art 3rd generation SR source.

2. Methods
2.1. Substrate technologies
Structured substrates for pXRD probing of droplets should

-ideally- have the following properties: (i) low X-ray absorption,
(ii) low X-ray background scattering, (iii) none or weak
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shadowing-effects, (iv) tailored wetting behaviour and
(v) predetermined aggregation or self-assembly points.

Pillared Si-SHSs (Fig. 1A), based on Si-wafers of ~500 pm thick-
ness, are a well-established technology [9] but pose problems as
supports for weakly X-ray scattering biological specimens due to high
X-ray absorption (e.g. ~82% at A~1 A [10]). The signal/noise ratio of
X-ray signals is, however, high thanks to the low X-ray scattering
background of single-crystalline silicon. As alternative way, a more X-
ray transparent substrate such as ~500 pm thick polymethylmetha-
crylate (PMMA) sheets can be chosen to fabricate PMMA-SHSs [11].
The strong diffuse X-ray scattering background from the PMMA sheet
requires, however, precise background subtraction techniques [11].
Although experimental considerations usually prevail, reducing the
number of steps in producing a structured substrate can be a valuable
economic argument. Indeed, creating a SHS from PMMA by surface
roughening via plasma etching (Fig. 1C; left) requires fewer fabrica-
tion steps than a pillared PMMA-SHS [11]. It is also interesting noting
that by reducing the nanofibrillar PMMA density and in the absence
of a Teflon layer, the surface wetting properties can be tailored from
superhydrophobic to superhydrophilic (Fig. 1C; right) [12,13]. A thin
PMMA film can also be spin-coated and structured on highly X-ray or
IR transparent substrates such as SisN, membranes, [13] allowing
reducing absorption and diffuse X-ray scattering.

Depending on the position of the X-ray beam on a droplet, the
edge of a SHS will more or less shadow the pXRD pattern for a SR-
beam aligned parallel to the surface (“horizontal geometry”: HG; see
Figs. 2 and 3). Shadowing problems can be an issue when probing a
droplet or residue close to the surface. Highly X-ray transparent, thin
SisN,4 substrates with SU-8 pillars are better suited for HG-mode
probing provided that the surrounding Si-frame is also thin (Fig. 1E)
[10]. Moreover, it has the intrinsic advantage that the residue can be
easily detached from the substrate and posed to a thin capillary tip
(Fig. 4A) [16]. This is, however, not possible for fragile morphologies
such as nanofilaments which have to be probed on the substrate in
NG-mode. In order to reduce and locally avoid absorption in NG, one
can use a pillared Si-SHS based on a thin silicon substrate ( <50 pm)
with etched holes (Fig. 1D) [15]. The variation of X-ray absorption
across the substrate requires, however, elaborate data treatment for

absorption corrections which can be avoided in practice by using a
SHS based on a thin SisN4 membrane with SU-8 pillars (Fig. 1E) [10].
The radial pillar-gradient shown in Fig. 1E generates in addition a
pinning centre which allows keeping the droplet at a constant pos-
ition during evaporation. An alternative is provided by fabricating a
cone in a forest of silicon pillars via ion-beam milling (Fig. 1E) [9].
Pillar gradients and cones are of particular interest for concentrating
ultradilute solution droplets at predetermined points for probing
experiments [9,17,18].

In summary, pillared SHSs based on Si3sN, membranes and SU-8
pillars [10] provide a significant advantage for probing weakly scatter-
ing organic or biological materials with SR scattering techniques.
PMMA-SHSs based on PMMA thin films with nanofibrillar surface
roughness have a considerable potential, in particular for FTIR applica-
tions [13]. Pillared Si-SHSs based on standard Si-wafers remain of int-
erest for stronger scattering materials in view of a well-established
nanofabrication technology. Pillared Si-SHSs with holes are used for
TEM applications [9] but are not optimal for X-ray scattering in view of
local absorption variations.

2.2. Synchrotron radiation scattering techniques

High brilliance SR is produced in a so-called storage ring by elec-
tron bunches moving close to the speed of light through periodic
magnetic devices (e.g. undulators) [19]. The main elements of a pXRD
beamline are shown in Fig. 2. SR emitted in a narrow cone from an
undulator is monochromated (AE/E~10~4) by a double Si-crystal to
-typically- E~13 keV (A~0.95 A) and focused at sample position by
refractive, reflective or diffractive optical elements.

HXRD experiments reported below were performed at the ESRF-
ID13 beamline which uses currently refractive lenses made of Be or Si
providing routinely beam sizes from a few pm down to ~100 nm
with a flux up to ~9 x 10" photons/s in an about 2 x 3 pm? focal
spot at ~13 keV [7,20-22]. Experiments are generally performed in
air although the control of humidity would allow modulating the
droplet evaporation rate by up to about factor 7 [3]. Droplets are
generally probed in HG-mode but a grazing-incidence geometry is

Fig. 1. SEM images for selected microfabricated surfaces (A): Si-SHS with a forest of Si-pillars. (B): PMMA-SHS with micropillars showing nanofibrillar roughness. (Adapted
from: [11]) (C): Left: PMMA-SHS with a high-density nanofibrillar PMMA surface. (Adapted from: [14]); Right: Superhydrophilic SisN4 substrate with a low-density
nanofibrillar PMMA surface (same scale). (D): Pillared Si-SHS with 6 pm diameter, etched holes developed for transmission electron microscopy. (Adapted from: [9]) (E): SHS
based on a SisN4 membrane and a gradient of SU-8 pillars. (Adapted from: [10]) (F): Pillared Si-SHS with central nanocone. (Adapted from: [15]) The pillar-gradient (E) and

the nanocone provide an attraction potential for an evaporating droplet.
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