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a b s t r a c t

In digital image correlation, the sub-pixel intensity interpolation causes a systematic error in the measured
displacements. The error increases toward high-frequency component of the speckle pattern. In practice, a
captured image is usually corrupted by additive white noise. The noise introduces additional energy in the
high frequencies and therefore raises the systematic error. Meanwhile, the noise also elevates the random
error which increases with the noise power. In order to reduce the systematic error and the random error
of the measurements, we apply a pre-filtering to the images prior to the correlation so that the high-
frequency contents are suppressed. Two spatial-domain filters (binomial and Gaussian) and two
frequency-domain filters (Butterworth and Wiener) are tested on speckle images undergoing both
simulated and real-world translations. By evaluating the errors of the various combinations of speckle
patterns, interpolators, noise levels, and filter configurations, we come to the following conclusions. All the
four filters are able to reduce the systematic error. Meanwhile, the random error can also be reduced if the
signal power is mainly distributed around DC. For high-frequency speckle patterns, the low-pass filters
(binomial, Gaussian and Butterworth) slightly increase the random error and Butterworth filter produces
the lowest random error among them. By using Wiener filter with over-estimated noise power, the
random error can be reduced but the resultant systematic error is higher than that of low-pass filters. In
general, Butterworth filter is recommended for error reduction due to its flexibility of passband selection
and maximal preservation of the allowed frequencies. Binomial filter enables efficient implementation and
thus becomes a good option if computational cost is a critical issue. While used together with pre-filtering,
B-spline interpolator produces lower systematic error than bicubic interpolator and similar level of the
random error. Cubic B-spline interpolator can achieve comparable efficiency as bicubic interpolator, while
quintic B-spline interpolator requires about 1.5 times the running time.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Digital image correlation (DIC) is a non-contact optical metrol-
ogy for full-field deformation measurement [1]. Given a pair of
images captured before and after the deformation, DIC extracts the
image displacements by optimizing the correlation between the
intensities of the corresponding locations. Recent studies show
that the measurement error of DIC is highly related to the imaging
system and the image matching algorithm [2–12]. The imperfec-
tion of the imaging process, including lens distortion and varying
image and object distance, causes the non-linearity between the
image displacement and the actual object displacement. This can
be corrected by using high-quality camera lenses (e.g. telecentric

lenses) [5,10] and distortion compensation methods [9,11]. On the
other hand, the measured image displacement itself usually
deviates from its true value due to the image matching error,
which is largely attributed to the decorrelation of the correspond-
ing intensities. Several factors leading to the decorrelation include
sub-pixel intensity interpolation, image noise, and the mismatch
of the shape function. While the shape function mismatch can be
mitigated by using sophisticated model [3,13], subset control
[14,15] or adaptive weighting [16,17], intensity interpolation and
image noise are inevitable. The target position of a reference pixel
generally falls on a non-integer location in the deformed image. Its
corresponding intensity must be interpolated from the sampled
intensities at integer locations whose values are usually corrupted
by image noise.

Schreier et al. discovered that the commonly used interpolations,
e.g. bicubic and B-spline interpolation, introduce a systematic error in
the measured image displacements [2]. The error depends on the
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interpolator, the sub-pixel position, and the frequency contents of the
image. For a given interpolator, the amplitude of the error increases
toward higher frequency component. Unfortunately, the speckle
pattern used in DIC calculation usually has a wide spectrum due to
its random nature. The image noise, generally modelled as additive
white Gaussian noise (AWGN) [18], would further increase the
energy in the high frequencies of the image, making the systematic
error even higher. Furthermore, the noise is also the major source of
the random error in the measurements [4,6,14]. Given that the
additive noise has zero mean and finite variance, the standard
deviation of the measured displacements is proportional to the
standard deviation of the noise amplitude [6]. Therefore, mitigating
the negative effect of the intensity interpolation and the image noise
is critical to the measurement error reduction of DIC.

An intuitive solution is to apply a low-pass filtering to the
recorded images prior to the correlation. By suppressing the high-
frequency image contents, the systematic error caused by the
intensity interpolation can be reduced. The low-pass filtering also
decreases the noise power, which might enables random error
reduction in the meantime. Schreier et al. test a 3�3 binomial filter
on simulated noise-free speckle images and achieve a decrease in the
systematic error [2]. Pan evaluates the measurement error after a
Gaussian filter is applied to a selected speckle image with simulated
superposed AWGN [19]. The results show that Gaussian filtering with
proper kernel size only reduces the systematic error and the random
error slightly increases after pre-filtering.

In this paper, we wish to study the effect of the pre-filtering
from a more comprehensive perspective. Because the measure-
ment error of DIC depends on many factors including the inter-
polator used, the spectrum of the speckle image, and the level of
the additive noise, an analytical study is not trivial. Therefore, an
experimental study is carried out instead. A total of four widely
used de-noising filters, namely binomial, Gaussian, Butterworth
and Wiener filter, are tested in combination with three popular
interpolation methods, namely bicubic, cubic B-spline and quintic
B-spline interpolation. Each of the twelve combinations is eval-
uated on real-world speckle images with different power spectra,
noise levels, and prescribed translations. By assessing the sys-
tematic error and the random error of the measured displace-
ments, we are particularly interested in the following issues:

� Does pre-filtering enable error reduction on different types of
speckle image?

� Which interpolator should be used in combination with pre-
filtering?

� Can the systematic error and the random error be simulta-
neously reduced by using proper filters?

� How to select the filter and determine its parameters to obtain
desirable results?

The rest of the paper is organized as follows. Section 2 outlines
the DIC algorithm and introduces the four image filters under test.
Section 3 details the datasets used in the numerical study and the
experimental results are presented and discussed regarding the
above issues in Section 4. In Section 5, a real-world translation
experiment is adopted for further validation. Finally, Section 6
gives the conclusion.

2. Pre-filtering prior to image correlation

2.1. Digital image correlation

Digital image correlation tracks a reference point in a target
image by finding the best image warping that optimizes the
correlation between the intensities around the two

correspondences. The objective in the optimization, the correla-
tion coefficient, is required to be robust to illumination variation
and able to be minimized efficiently. One of the choices is zero-
mean normalized sum of squared difference (ZNSSD):

CZNSSDðpÞ ¼∑
Ω

Fðx; yÞ�Fmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑Ω½Fðx; yÞ�Fm�2

q � Gðx0; y0Þ�Gmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑Ω½Gðx0; y0Þ�Gm�2
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where Ω is the selected reference subset. Fðx; yÞ and Gðx0; y0Þ are
the intensities at corresponding locations in the reference and the
target images and Fm and Gm are the mean intensities in the two
subsets, respectively. The correspondence is determined by first-
order shape function:

x0 ¼ xþuþuxΔxþuyΔy

y0 ¼ yþvþvxΔxþvyΔy

(
ð2Þ

where ðΔx;ΔyÞ is the deviation from the reference point, and the
deformation parameter p¼ ðu; v;ux;uy; vx; vyÞ is composed of the
displacements and their first-order gradients at the reference
point.

When the intensity is evaluated at a sub-pixel location, inter-
polation is required as a digital image only has sample values at
integer coordinates. Bicubic, cubic B-spline, and quintic B-spline
are the most widely used interpolators because they achieve high
reconstruction accuracy [2,20]. Bicubic interpolation can be very
efficient by using convolution [21] or pre-computed coefficient table
[22]. B-spline interpolators can also achieve comparable efficiency
after a sequence of filtering is applied in advance [20,23]. To minimize
the non-linear correlation coefficient, an iterative algorithm (e.g.
Newton–Raphson or Levenberg–Marquardt) is usually used, which
starts from an initial parameter and iteratively refines the parameter
[24]. The initialization must be sufficiently good in order to enable
correct and rapid convergency [25].

2.2. Spatial-domain filters

As previously mentioned, both bicubic and B-spline interpola-
tors produce a systematic error of the measured displacements
and the error increases toward high-frequency component of the
image. Intuitively, suppressing the high-frequency content prior to
the correlation can be helpful to reduce the systematic error.
Schreier et al. [2] demonstrate that a 3�3 binomial filter is
effective, and later Pan [19] achieves similar results by using
Gaussian low-pass filter.

Image filtering using binomial filter or Gaussian filter requires
convoluting the input image with a two-dimensional (2D) kernel.
Fortunately, both filters are separable in the sense that the 2D
kernel can be expressed as an outer product of two identical one-
dimensional (1D) kernels. Therefore, the image filtering can be
implemented more efficiently by two successive 1D convolutions
in the horizontal and vertical directions, respectively. The 1D
kernel of a binomial filter can be computed by repeated convolu-
tion with the kernel ½1=2 1=2�. Specifically, the 1D kernels of size
3 and 5 are

hb;3 ¼
1
4
½1 2 1� ð3Þ

hb;5 ¼
1
16

½1 4 6 4 1� ð4Þ

The 1D kernel of a Gaussian filter is obtained by

hgðxÞ ¼ Ce�x2=2s2 ð5Þ
where x¼ �m;…;m and ð2mþ1Þ is the kernel size. The factor C is
chosen such that the kernel sum up to unity.
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