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A B S T R A C T

A large literature exists on techniques for extracting probability distributions for future asset prices from option
prices. No definitive method has been developed however. The parametric ‘mixture of normals’, and non-
parametric ‘smoothed implied volatility’ methods remain the most widespread approaches. These though are
subject to estimation errors due to discretization, truncation, and noise. Recently, several authors have derived
‘model free’ formulae for computing the moments of the risk neutral density (RND) directly from option prices,
without first estimating the full density. The accuracy of these formulae is studied here for the first time. The
Black-Scholes formula is used to generate option prices, and error curves for the first 4 moments of the RND are
computed using the ‘model-free’ formulae. It is found that, in practice, the formulae are prone to large and
economically significant errors, because they contain definite integrals that can only be solved numerically. We
show that without mathematically equivalent expressions with analytical solutions the formulae are difficult to
deploy effectively in practice.

1. Introduction

Methods for extracting implied probability distributions for the
prices or returns of an asset at a future time, from series of synchro-
nously observed market prices of options on the asset, have been ex-
tensively studied since the mid 1990s [see e.g. Bliss and Panigirtzoglou
(2002), Jackwerth (2004), and more recently Figlewski (2008) for re-
views]. Breeden and Litzenberger (1978) made explicit the exact re-
lationship between option prices and the risk neutral density (RND)
[see Appendix A for details and proof]. In the risk-neutral pricing fra-
mework the price of an option is equal to its discounted expected payoff
under the risk neutral measure. Evaluating the integral of the payoff
function over the risk neutral measure and discounting at the risk free
rate can thus price an option. Given a continuum of observed option
prices, this pricing calculation can be inverted for European exercise
options, and the full RND for the price (return) of the underlying asset
at maturity extracted. Useful information contained in the shape of the
distribution can thus be recovered. RNDs have numerous important
applications in finance. These include: Pricing securities [Cox & Ross,
1976]; Estimating value-at-risk (VaR) for risk management purposes
[Ait-Sahalia & Lo, 2000]; Studying risk aversion and risk preferences
[Bliss & Panigirtzoglou, 2004]; Assessing financial market expectations
regarding future asset prices, interest rates, and exchange rates, in
connection with setting monetary policy [Lynch & Panigirtzoglou,
2008]. However, existing methods for extracting RNDs are variously,

computationally cumbersome, data intensive, and or subject to esti-
mation errors due to discreteization, truncation, and noise issues in the
raw options data. No definitive method has been developed, but two
approaches are popular with practitioners, namely, the mixture of
normals [Ritchey, 1990], and the smoothed implied volatility method
[Shimko, 1993]. Tests suggest the latter method produces better results
[see e.g. Bliss & Panigirtzoglou, 2002 and Andersson & Lomakka, 2003].

In many applications it is enough to know the first four moments of
the RND. Hence a more parsimonious representation will suffice. Based
on recent theoretical developments, several authors have derived exact
formulae for computing the moments of the RND directly from option
prices without first estimating the full density distribution. These for-
mulae have the advantage of being ‘model free’, in the sense of not
being subject to the assumptions of any option pricing model. New
approaches for extracting the RND, by using these formulae to compute
its moments in a first step, have also been developed. Of course, when
these formulae are applied to observational data, they also are subject
to estimation errors due to discretization, truncation, and noise issues in
the data. Jiang and Tian (2007), and Dennis and Mayhew (2002, 2009),
have studied the errors arising from discrete implementation of the
‘model free’ implied variance, and the implied skewness and kurtosis
respectively, and show that they are economically significant. What is
perhaps less well appreciated is that the solutions to the formulae
themselves exhibit sensitivity to their inputs, even for realistic ranges of
values, and are thus capable of being biased estimates.

http://dx.doi.org/10.1016/j.irfa.2017.09.011
Received 30 January 2017; Received in revised form 22 September 2017; Accepted 24 September 2017

⁎ Corresponding author at: Hull University Business School, University of Hull, Hull HU6 7RX, United Kingdom.
E-mail address: robert.hudson@hull.ac.uk (R. Hudson).

International Review of Financial Analysis xxx (xxxx) xxx–xxx

1057-5219/ © 2017 Elsevier Inc. All rights reserved.

Please cite this article as: Healy, J.V., International Review of Financial Analysis (2017), http://dx.doi.org/10.1016/j.irfa.2017.09.011

http://www.sciencedirect.com/science/journal/10575219
https://www.elsevier.com/locate/irfa
http://dx.doi.org/10.1016/j.irfa.2017.09.011
http://dx.doi.org/10.1016/j.irfa.2017.09.011
mailto:robert.hudson@hull.ac.uk
http://dx.doi.org/10.1016/j.irfa.2017.09.011


The contribution of this paper is to demonstrate that applying the
‘model free’ formulae for the first four moments of the RND produce
large and economically significant errors independently of those re-
sulting from the observation issues discussed above. This is shown by
solving the formulae as exactly as possible in a continuous strike price
framework, for realistic ranges of inputs and constructing error curves.
This is important because it shows that the formulae are of limited
applicability in their current forms.

The remainder of the paper is organised as follows. Section 2 re-
views the literature on ‘model free’ implied moments of the RND.
Section 3 outlines the methodology used. Section 4 presents the find-
ings. Section 5 contains a summary and conclusions.

2. ‘Model free’ implied moments: literature review

The development of “model-free” methods of directly extracting the
moments of the RND has emerged from three separate strands of re-
search. First, work on the log contract, volatility, and variance swaps
[Neuberger (1994), Carr and Madan (1998), Demeterfi, Derman,
Kamal, and Zou (1999)]. Second, extraction of information on the un-
derlying price processes from option prices [Derman & Kani, 1994;
Britten-Jones & Neuberger, 2000]. Third, studies of the characteristic
function of the state price density (discounted RND), as an alternative
spanning entity to options for pricing other securities [Bakshi &Madan,
2000; Bakshi, Kapadia, &Madan, 2003].

Demeterfi et al. (1999) show how hedging an option on the loga-
rithm of the price of an underlying asset (the log contract), provides a
payoff equal to the variance of the asset's returns. No such contract is
traded in practice; however the log contract can be replicated by a
portfolio of European exercise options with a continuous range of
strikes and maturities. This portfolio has a value equal to the payoff of
the log contract. Dynamically hedging a log contract therefore captures
realized variance (volatility). The value of a variance swap, a forward
contract F on future realized variance with strike K, depends on the
future payoff (σR2−KVAR)×N discounted to its present value under the
risk neutral measure, where σR2 is realized variance, N is the notional
value and KVAR is the price of variance. KVAR is equal to the value of the
portfolio that replicates the log contract. Demeterfi et al. (1999) derive
formulae for valuing and pricing the variance swap, and directly ob-
taining the cost of the replicating portfolio. The key result, a formula for
the fair value of future variance is given as Equation (26) of their paper,
and shown here as Eq. (1).
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In Eq. (1) Kvar is the fair price of future variance. S0 is the underlying
asset price at time 0. K is the strike price. P(K) and C(K) are the prices of
out of the money calls and puts. S⁎ is the value of the underlying asset at
the boundary between the calls and the puts (e.g. at the money). T is the
maturity of the option.

Britten-Jones and Neuberger (2000) demonstrate how, given a
continuum of European option prices with strikes and maturities ran-
ging from zero to infinity, a condition can be derived which must be
satisfied by all price processes consistent with the given set of option
prices. Derman and Kani (1994), Dupire (1994, 1997), and Rubinstein
(1994) showed that when volatility is deterministic, a unique price
process exists that is consistent with option prices. Britten-Jones and
Neuberger extended this analysis to a non-deterministic volatility set-
ting, where many consistent price processes are possible. They derived
their results in a discrete framework, using a time-price grid, and took
limits as the interval sizes approach zero to obtain continuous coun-
terparts. In an appendix, they also derived their results directly in a
diffusion setting. Britten-Jones and Neuberger's simple condition is

given as Equation (10) in Proposition 1 of their paper and is shown here
as Eq. (1a).1
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In Eq. (1a) C(t, K) is the call option price at strike price K and future
time t, h is the size of the discrete time intervals used in the setting and
u is the geometric factor acting on stock prices that determines the
possible stock prices given the discrete time intervals.

The authors show that all price processes satisfying their
Proposition 1 have the same (risk neutral) expectation for squared price
volatility (e.g. price variance) over any given time period, and thus
imply the same one-period forecast of volatility. Because this forecast is
common to all such processes they refer to it as the “model-free” im-
plied volatility. The analytical formula needed to extract the “model-
free” implied volatility for a period between any two arbitrary future
dates, from current prices of options expiring on those dates is given as
Equation (13) of Proposition 2 of their paper shown here as Eq. (1b).2

The authors note that this equation was derived independently by Carr
and Madan (1998) in the context of pricing and hedging variance
swaps, using results from Neuberger (1994), and the well-known
Breeden and Litzenberger (1978) result.
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A simplification of Eq. (1b) for the period between the current time
and any arbitrary future date, is given as Equation (14) of Britten-Jones
and Neuberger (2000), and is reproduced here as Eq. (2).
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In Eq. (2) max(S0 − K,0) is the intrinsic value of the option at time
0.

Bakshi and Madan (2000) observe that though the payoff functions
of other securities are spanned by options, this has not resulted in a
simplification of security valuations, because options themselves are
complex to value. They propose the use of an alternative spanning
entity. Namely; the characteristic function of the state price density
(SPD), which they argue, significantly simplifies option pricing. The
SPD is the discounted risk-neutral density function, and its character-
istic function can be obtained via a Fourier transform.3 Theorem 1 of
Bakshi and Madan (2000) demonstrates that in an arbitrage free setting,
the continuum of characteristic functions and the continuum of options
are equivalent classes of spanning securities. It follows as a special case
of Theorem 1 that all twice differentiable payoff functions can be al-
gebraically spanned by a continuum of out-of-the-money calls and puts.

1 Proposition 1: In any continuous risk-neutral process, the expectation of squared
return, conditional on the stock price and time, is determined by the initial option prices
as
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The converse is also true; any continuous martingale process for S that satisfies the above
condition for all K ϵ K and t ϵ T will price all European options correctly by their expected
payoffs.

2 Proposition 2: The risk-neutral expected sum of squared returns between two arbi-
trary dates t1 and t2 is given from the set of prices of options expiring on these two dates as
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3 Recent research discusses how the use of wavelets has advantages over Fourier
transforms in option pricing (Ortiz-Gracia &Oosterlee, 2013).
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