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a b s t r a c t

Thanks to its ability to non-destructively access internal strains in materials, Digital Volume Correlation
(DVC) is gaining growing interest from both experimental and theoretical mechanics communities.
One important issue in the implementation of DVC is the considerable computational costs associated with
the huge amount of data, which hinders the applications of the technique, especially for high-resolution
displacement and strain measurements. In this paper, we propose an accurate global DVC approach
based on a Fourier decomposition for the kinematic basis of the sought displacement field. The approach,
referred to as IS-DVC, leads to an algorithm whose computational complexity is not considerably
increased by increasing the number of Degrees of Freedom (DOF) of the kinematic basis, thus being
computationally efficient using the Fast Fourier Transform (FFT). Artificial experiments have been used to
evaluate the uncertainties of IS-DVC at high resolutions. Especially, displacement fields of 3D composites
with spherical and non-aligned ellipsoidal particles at small scales were reconstructed. Resulting
measurements revealed close similarities in terms of strain heterogeneities throughout the volume
with the benchmark strains. Furthermore, it was shown that, in the presence of a discontinuity, the
measurement uncertainties are not significantly affected, except for regions surrounding the disconti-
nuity, hence validating the robustness of the reconstructed displacement field at a large number of DOF.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The Digital Image Correlation (DIC) technique has established
itself as an important tool in the area of experimental mechanics
for more than three decades [1]. The valuable knowledge on the
full-field displacements and strains that the technique provides in
2D has paved the way for interesting applications, such as mechanical
properties [2,3] and damage law [4,5] identification, and strain
mapping [6–8]. The theoretical framework of DIC can be expanded
into three dimensions, in which case it is called Digital Volume
Correlation (DVC) [9]. DVC has found emerging applications in the
past decade [9–18] concurrently with the advances made in 3D
imaging technologies, such as X-ray tomography and confocal
microscopy. DVC allows for non-destructively evaluating displace-
ments and strains inside materials. However, practical issues related

to image acquisition and calculation have not only limited the
applications of DVC, but also hindered the full exploitation of DIC's
accuracy. Some of these issues are briefly discussed in the sequel:

� Material limitation: The choice of material for DVC is often
dictated by the limitations of the employed imaging modality in
revealing sufficient features for a reliable correlation. For example,
in X-ray tomography, these features should stem from the difference
between the capacities of the constituent phases in attenuating the
emitted X-ray energy. Materials with cellular or granular structures
have shown to be suitable for this purpose [9,13,14,17,19]. Metal
matrix composites, such as nodular graphite cast iron [18] or man-
made composites [20], have also been studied. In the latter, small
particles can be added during the elaboration process in order to
create the required texture. These particles should be chosen so as
not to significantly alter the overall mechanical properties [20].

� Imaging artifacts: Spurious features are inevitably introduced into
volume images during the acquisition process. Such phenomena lead
to perturbations in the measured displacements. Although image pre-
processing partly alleviates the problem [21,22], further regularization
of the inverse problemmight be required for high-resolution DVC [23].

� Algorithm implementations: The first developments of DVC
were based on local approaches [9,24–26]. Later, global approaches
were developed based on trilinear Finite Element (FE) shape
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functions [19], as well as enriched FE shape functions for speci-
mens containing cracks [27]. However, as a result of the extension
from 2D to 3D, the amount of data as well as the number of
Degrees of Freedom (DOF) for DVC is significantly increased in
both local and global approaches, when compared to their 2D
counterparts. Consequently, DVC algorithms are highly demanding
in terms of computer resources. This limitation has hindered the
practical application of high-resolution DVC.

The present paper deals with the numerical aspects of DVC,
specifically as far as high-resolution DVC1 is concerned. We
propose a global approach based on Fourier basis functions
referred to as Improved Spectral DVC (IS-DVC) hereinafter. Being
an extension to 3D of the Improved Spectral Approach (ISA) [29–31],
IS-DVC makes use of the Fast Fourier Transform (FFT) to convert
the computationally cumbersome system of equations in the
Fourier domain to an explicit equation for the displacement field
into the spatial domain. The expression thus found can be
evaluated quite efficiently. The interesting feature of the approach
lies in the fact that the complexity of the correlation procedure
does not significantly increase for larger number of DOF.

The theoretical framework of the IS-DVC is explained in
Sections 3 and 3.1. The approach is then evaluated on a series of
artificial experiments. Simulated experiments requiring high reso-
lution DVC, such as composite materials at micro-scale, were
considered, details of which are explained in Section 4. Finally,
the results and discussion are presented in Section 5.

2. Background

2.1. Concept of pattern matching

Let f ðxÞ and gðxÞ represent the intensity functions of spatial
coordinates x¼ ðx; y; zÞ corresponding to the undeformed and
deformed images, respectively. In ideal conditions, these two
configurations are correlated through a mapping of coordinates
expressed by the following relation:

f ðxÞ ¼ gð �xÞ where ð1aÞ

�x ¼ xþuexactðxÞ ð1bÞ
where uexactðxÞ is the displacement vector field resulting from the
applied loads. The exact displacement, in the Volume of Interest
(VOI), is estimated by a mathematical function with specified
Degrees of Freedom (DOF), i.e.

uexactðxÞ � uðx;pÞ ð2Þ
where p is the set of parameters representing the DOF that should
be determined from the pattern matching. The pattern matching
consists in finding the parameters that minimize the gap between
f ðxÞ and gð �xÞ. This can be expressed as follows:

popt ¼ argmin
pAA

Z
VOI

f ðxÞ�gðxþuðx;pÞÞ� �2 dx� �
ð3Þ

where A denotes the set of admissible choices for p and the
integrand is called the squared correlation residuals that should be
minimized. For the sake of simplicity, the above formulation is written
assuming that the intensity functions are continuous, hence the use of
integral operators. In practice, the discrete image functions are
interpolated using proper interpolation methods [32–34] in order to
perform the optimization at sub-pixel positions.

2.2. Resolution strategy

Different approaches of DIC depend, in the first place, on how
the sought displacement field is formulated. Nevertheless, no
matter how it is formulated, the displacement fields for different
approaches can be expressed as the linear combination of several
chosen basis functions [35], which can be expressed in the form of
the following vector product:

uðx;pÞ ¼ ½ψ1ðxÞ ψ2ðxÞ ⋯ ψK ðxÞ�

υ1

υ2

⋮
υK

26664
37775 ð4aÞ

where p� fυnjn¼ 1;2;…;Kg ð4bÞ
υn are the sequence of unknown 3�1 (or 2�1 in DIC) vectors
associated with basis functions ψnðxÞ and K is the total number of
basis functions. Except for some approaches (for example in [26]),
a Newton iterative strategy is often used to solve the problem (3).
The iterations start with an initial solution pð0Þ (leading to uð0Þ), at
iteration i, gðxþuÞ is corrected for uði�1Þ and the new solution lies
in finding the increment δuðiÞ ¼ uðiÞ �uði�1Þ. It is assumed that the
sought increment, δuðiÞ, is small enough so that one can linearize
gðxþuði�1ÞðxÞþδuðxÞÞ as follows:

gðxþuði�1ÞðxÞþδuðxÞÞ � gðxþuði�1ÞðxÞÞþ∇T
xgðxþuði�1ÞðxÞÞδuðxÞ

ð5aÞ

provided that 8x; JδuðxÞJo JηJ : ð5bÞ
where η is a small real vector, ∇x denotes the gradient operator
with respect to vector x, and □T indicates the vector transpose.
Therefore, the First-order Optimality for the problem (3) is written
as follows:

∇υn

Z
VOI

½f ðxÞ� �g ði�1ÞðxÞ�∇T
x �g

ði�1ÞðxÞδuðx;pÞ�2 dx
� �

¼ 0; n¼ 1;2;…;K

ð6Þ
and

�g ðiÞðxÞ ¼ gðxþuðiÞðxÞÞ ð7Þ
By applying the differentiation and after simplifications, Eq. (6) is
turned into:

Z
VOI

∇T
x �g

ði�1ÞðxÞ ψ1ðxÞ ψ2ðxÞ ⋯ ψK ðxÞ
h i υ1

υ2

⋮
υK

26664
37775ψnðxÞ∇x �g

ði�1ÞðxÞ

0BBB@
1CCCA dx

¼
Z
VOI

ððf ðxÞ� �g ði�1ÞðxÞÞψnðxÞ∇x �g
ði�1ÞðxÞÞ dx; n¼ 1;2;…;K ð8Þ

The above equation can be reorganized into a system of linear
equations, i.e.

J11 J12 ⋯ J1K
J21 ⋱ ⋮
⋮ ⋱ ⋮
JK1 ⋯ ⋯ JKK

266664
377775

υ1

υ2

⋮
υK

26664
37775¼

ρ1

ρ2

⋮
ρK

266664
377775 ð9aÞ

where Jmn and ρm are 3�3 (or 2�2) and 3�1 (or 2�1) matrices
calculated from the following equations:

Jmn ¼
Z
VOI

ðð∇x �g
ði�1Þ � ∇x �g

ði�1ÞÞðxÞψmðxÞψnðxÞÞ dx ð9bÞ

ρm ¼
Z
VOI

ððf ðxÞ� �g ði�1ÞðxÞÞψmðxÞ∇x �g
ði�1ÞðxÞÞ dx ð9cÞ

1 Throughout this paper, the resolution of a DVC algorithm refers to that of
displacement and strain measurements. In this sense, the resolution is defined as
“the smallest change in a quantity being measured that causes a perceptible change
in the corresponding indication.” (ISO/IEC guide [28]).
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