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a b s t r a c t

By virtue of the anti-noise and anti-defect abilities, in this paper, a two-dimensional continuous wavelet
transform algorithm is proposed to analyze two-step arbitrarily phase-shifted interferograms with an
orthonormalization process. The novel algorithm takes the advantages of the two existing ones, and it has a
remarkable ability to accurately and automatically extract full-field phase distribution from two phase-
shifted interferograms where they may contain arbitrary and unknown phase shift, complex fringes with
phase ambiguity, large fringe-frequency variations, noise, defects and corrupted fringes. The validity of the
algorithm is demonstrated by both computer simulation and real experiments.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The phase-shifting (PS) technique is commonly used in optical
fringe pattern or interferogram analysis because of its many attrac-
tive advantages. The drawback of the PS technique is that it is
sensitive to noise and it cannot cope with the defects or corrupted
fringes existed in the interferograms. This impairs the application of
the PS technique to practice where anti-noise and anti-defect
processing abilities are desired. When using the PS technique to
analyze noisy interferograms, a typical way to reduce the noise level
is to apply a filtering process as a pre- or post-processing step [1].
For interferograms with defects or corrupted fringes, special handling
and complicated schemes are normally required, such as using a mask
map and phasor image processing [2], a quadrature filter [3], and a
frequency transfer function [4]. Nevertheless, the noise and defects
generally cannot be considerably and simultaneously eliminated with
the above schemes, so a more robust anti-noise and anti-defect
analysis algorithm is highly demanded. Representative concepts
suitable for this purpose include the windowed Fourier transform
[5], the advanced phase demodulation [6,7], and the wavelet trans-
form [8–10] approaches.

Recently, a hybrid two-dimensional continuous wavelet transform
(2D-CWT) technique, combined with the classical PS technique, has
been developed to obtain the full-field phase distribution from
interferograms that contain complex fringes, noise, defects and cor-
rupted fringes [11]. The hybrid technique inherits the merits of both

the 2D-CWT and the PS techniques; on the other hand, it is inevitably
constrained by certain requirements of the two techniques. Particularly,
the hybrid technique needs at least three phase-shifted interferograms,
in which the phase-shifting amount must be fixed at a specific value
and cannot be arbitrarily chosen. It is noteworthy, however, that it is
possible to extract phase from arbitrarily phase-shifted interferograms
using advanced PS algorithms [12,13] or fulfill the phase analysis with
just two phase-shifted interferograms [14–16,18]. Although these
algorithms cannot cope well with the noise and fringe defects, they
help reveal a possibility that the corresponding concepts could be
incorporated into the hybrid 2D-CWT technique to achieve the desired
anti-noise and anti-defect phase extraction.

In this paper, a novel 2D-CWT algorithm is proposed to analyze
two-step arbitrarily phase-shifted interferograms by integrating the
interferogram orthonormalization process and the existing 2D-CWT
algorithm. The advanced algorithm can automatically extract full-
field phase distribution from two phase-shifted interferograms,
no matter whether the phase shift is arbitrary and unknown or not.
In addition, the technique does not require pre- or post-processing,
and the interferograms may contain complex fringes, large fringe-
frequency variations, noise, defects or corrupted fringes.

2. Principle

2.1. Interferogram orthonormalization process

The two-step phase-shifted interferograms can be mathemati-
cally expressed as follows:

I1ðxÞ ¼ IbðxÞþ IaðxÞ cos ½ϕðxÞ� ð1Þ
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I2ðxÞ ¼ IbðxÞþ IaðxÞ cos ½ϕðxÞþδ� ð2Þ
where xAR2 indicates the 2D coordinates of each pixel; Ib, Ia,
and ϕ denote the background intensity, the modulation amplitude,
and the angular phase, respectively; δ is the phase-shifting amount.

In practice, it is reasonable to assume that Ib can be filtered out
by mean intensity subtraction; thus Eqs. (1) and (2) can be written
as follows:

I1ðxÞ ¼ IaðxÞ cos ½ϕðxÞ� ð3Þ

I2ðxÞ ¼ IaðxÞ cos ½ϕðxÞþδ� ð4Þ
Among the various two-step phase-shifting (TSPS) techniques,

the one utilizing the Gram–Schmidt orthonormalization (GSO)
algorithm is capable of yielding the highest accuracy while being
simple and fast [17]. With the GSO algorithm and treating each
interferogram as a vector, the projection operator P that projects
the vector I1ðxÞ orthogonally onto the line spanned by the vector
I2ðxÞ can be defined as follows:

PI1ðxÞ½I2ðxÞ� ¼
〈I2ðxÞ; I1ðxÞ〉
〈I1ðxÞ; I1ðxÞ〉

I1ðxÞ ð5Þ

where 〈〉 represents the inner product of two vectors. Substituting
Eqs. (3) and (4) into Eq. (5) yields

PI1ðxÞ½I2ðxÞ� ¼
∑I2aðxÞ cos ½ϕðxÞ� cos ½ϕðxÞþδ�

∑I2aðxÞ cos 2½ϕðxÞ�
IaðxÞ cos ½ϕðxÞ� ð6Þ

where ∑ indicates the summation over all of the pixels
in each image. If the total fringe number is larger than
one in the interferograms, it can be derived that
j∑ cos 2½ϕðxÞ� cos ðδÞj{j∑ cos ½ϕðxÞ� sin ½ϕðxÞ� sin ðδÞj [17]. Based
on this relation, we can have

∑ cos ½ϕðxÞ� cos ½ϕðxÞþδ� �∑ cos 2½ϕðxÞ� cos ðδÞ ð7Þ
Next, since the fringe modulation amplitude IaðxÞ usually does not
have large variations in an interferogram, Eq. (6) can be simplified
as follows:

PI1ðxÞ½I2ðxÞ� �
∑I2aðxÞ cos 2½ϕðxÞ� cos ðδÞ

∑I2aðxÞ cos 2½ϕðxÞ�
IaðxÞ cos ½ϕðxÞ�

¼ IaðxÞ cos ½ϕðxÞ� cos ðδÞ ð8Þ
Then the vector which is orthogonal to I1ðxÞ can be obtained by the
following:

I? ðxÞ ¼ I2ðxÞ�PI1ðxÞ½I2ðxÞ� ð9Þ
Substituting Eqs. (4) and (8) into (9) yields

I? ðxÞ ¼ IaðxÞ cos ½ϕðxÞþδ�� IaðxÞ cos ½ϕðxÞ� cos ðδÞ
¼ � IaðxÞ sin ½ϕðxÞ� sin ðδÞ ð10Þ

Normalizing I1ðxÞ and I? ðxÞ gives

bI1 ðxÞ ¼ I1ðxÞ
J I1ðxÞJ

¼ IaðxÞ cos ½ϕðxÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑I2aðxÞ cos 2½ϕðxÞ�

q ð11Þ

bI ? ðxÞ ¼ I? ðxÞ
J I? ðxÞJ

¼ � IaðxÞ sin ½ϕðxÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑I2aðxÞ sin 2½ϕðxÞ�

q ð12Þ

Again, if there are more than one fringe in the interferograms and
the fringe modulation amplitude does not have large variations
across the interferograms, it can be seen that J I1ðxÞJffi J I? ðxÞJ
[17]. Consequently, the phase distribution of the two-step phase-
shifted interferograms can be obtained as follows:

ϕðxÞ ¼ tan �1 �
bI ? ðxÞbI1ðxÞ

" #
ð13Þ

2.2. 2D-CWT technique

Eq. (13) for the TSPS algorithm is based on the aforemen-
tioned assumption that IbðxÞ and IaðxÞ are uniform and constant
across each entire image. This condition is not easy to satisfy in
real applications, especially when noise and defects exist. Unlike
the PS technique, the 2D-CWT technique analyzes the fringes in
each small local region where IbðxÞ and IaðxÞ can be more
reasonably treated as uniform. The analysis is technically equiva-
lent to finding a local fringe pattern that matches with the real
fringe pattern, which can help eliminate the noise and help
recover the fringe information at the defect locations where
fringes are corrupted. Because of this intrinsic advantage,
the 2D-CWT technique should be technically suitable for analyz-
ing two-step phase-shifted interferograms in practice, as
elaborated below.

With the two-step phase-shifted interferograms, an analytic
interferogram can be constructed as follows:

IðxÞ ¼bI1ðxÞ� jbI ? ðxÞ ð14Þ
where j is the imaginary unit. This analytic interferogram can be
analyzed by employing the 2D-CWT technique with the direct
ridge detection algorithm [11]. The 2D-CWT of the analytic
interferogram is defined as follows:

Wðu; s;θÞ � 〈I;ψu;s;θ〉¼
Z
R2
IðxÞψ n

u;s;θðxÞ d
2x ð15Þ

where W is the wavelet coefficient, uAR2 denotes pixel position,
sARþ is a scale factor, θA ½0;2πÞ is a rotation angle, I indicates the
analytic interferogram, n represents the complex conjugate opera-
tor, and ψu;s;θ is the wavelet function defined by the following:

ψu;s;θðxÞ ¼ψ ½s�1r�θðx�uÞ� ð16Þ
where r�θ is the conventional 2�2 rotation matrix corresponding
to θ.

A series of wavelet coefficients at each pixel location can be
obtained from Eq. (15) using various parameter pairs ðs;θÞ [19].
The case where the wavelet coefficient has the maximummagnitude
is called the wavelet ridge. This can be expressed as follows:

WðuÞridge ¼Wðu; sridge;θridgeÞ ð17Þ
where

ðsridge;θridgeÞ ¼ arg max
sARþ
θA ½0;2πÞ

jWðu; s;θÞj� � ð18Þ

The phase at u can then be calculated from

ϕðuÞ ¼ tan �1 I½WðuÞridge�
R½WðuÞridge�

( )
ð19Þ

where I and R denote imaginary and real parts of a complex value,
respectively [20].

2.3. Procedure

Considering that the convolution involved in the 2D-CWT, i.e.,
Eq. (15), can be implemented by using fast Fourier transform (FFT),
the procedure of the proposed 2D-CWT algorithm previously
described is summarized as follows:

1. Project I2ðxÞ orthogonally onto I1ðxÞ by using Eq. (5), and obtain
the orthogonal signal I? ðxÞ through using Eq. (9).

2. Normalize I1ðxÞ and I? ðxÞ as bI1ðxÞ and bI ? ðxÞ, respectively.
3. Construct the analytic signal IðxÞ from the orthonormalized

interferograms bI1ðxÞ and bI ? with Eq. (14), and calculate the FFT
of IðxÞ as ~IðωÞ.
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