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a b s t r a c t 

The estimation of risk measures recently gained a lot of attention, partly because of the backtesting issues 

of expected shortfall related to elicitability. In this work we shed a new and fundamental light on optimal 

estimation procedures of risk measures in terms of bias. We show that once the parameters of a model 

need to be estimated, one has to take additional care when estimating risks. The typical plug-in approach, 

for example, introduces a bias which leads to a systematic underestimation of risk. 

In this regard, we introduce a novel notion of unbiasedness to the estimation of risk which is moti- 

vated by economic principles. In general, the proposed concept does not coincide with the well-known 

statistical notion of unbiasedness. We show that an appropriate bias correction is available for many 

well-known estimators. In particular, we consider value-at-risk and expected shortfall (tail value-at-risk). 

In the special case of normal distributions, closed-formed solutions for unbiased estimators can be ob- 

tained. 

We present a number of motivating examples which show the outperformance of unbiased estimators 

in many circumstances. The unbiasedness has a direct impact on backtesting and therefore adds a further 

viewpoint to established statistical properties. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

The estimation of risk measures is an area of highest impor- 

tance in the financial industry as risk measures play a major role 

in risk management and in the computation of regulatory capital, 

see McNeil et al. (2010) for an in-depth treatment of the topic. 

Most notably, a major part of quantitative risk management is of 

statistical nature, as highlighted for example in Embrechts and 

Hofert (2014) . This article takes this challenge seriously and does 

not target risk measures themselves, but estimated risk measures. 

Statistical aspects in the estimation of risk measures recently 

raised a lot of attention: see the related articles Davis (2016) and 

Cont et al. (2010) , Acerbi and Székely (2014) , Ziegel (2016) , 

Fissler et al. (2015) and Frank (2016) . Surprisingly, it turns out that 

statistical properties of risk estimators - related to the presence of 

bias - have not yet been analysed thoroughly. Such properties are 

very important from the practical point of view, as the risk bias 

usually leads to a systematic underestimation of risk. It is our main 

goal to give a definition of unbiasedness that makes sense econom- 

ically and statistically. The main motivation for this is the observa- 

∗ Corresponding author. 

E-mail addresses: marcin.pitera@im.uj.edu.pl (M. Pitera), 

thorsten.schmidt@stochastik.uni-freiburg.de (T. Schmidt). 

tion that the classical (statistical) definition of bias might be desir- 

able from a theoretical point of view, while it might be not priori- 

tised by financial institutions or regulators, for whom the backtests 

are currently the major source of evaluating the estimation. 

There is an ongoing intensive debate in regulation and in sci- 

ence about the two most recognised risk measures: Expected 

Shortfall (ES) and Value-at-Risk (V@R). This debate is stimulated 

by Basel III project ( BCBS - Basel Committee on Banking Su- 

pervision, 2009 ), which updates regulations responsible for capi- 

tal requirements for initial market risk models (cf. BCBS - Basel 

Committee on Banking Supervision, 2006; BCBS - Basel Com- 

mittee on Banking Supervision, 1996 ). In a nutshell, the old 

V@R at level 1% is replaced with ES at level 2.5%. In fact, 

such a correction may reduce the bias, however only in the 

right scenarios. The academic response to this fact is not unan- 

imous: while ES is coherent and takes into consideration the 

whole tail distribution, it lacks some nice statistical properties 

characteristic to V@R. See e.g. Cont et al. (2010) , Acerbi and 

Székely (2014) , Ziegel (2016) , Kellner and Rösch (2016) , Yamai and 

Yoshiba (2005) and Emmer et al. (2015) for further details and 

interesting discussions. Also, the ES forecasts are believed to be 

much harder to backtest, a property essential from the regulator’s 

point of view. 
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A further argument in this debate emerges from the results in 

Gneiting (2011) (see also Weber, 2006 ), showing that ES is not elic- 

itable . This interesting concept was originally developed in Osband 

and Reichelstein (1985) from an economic perspective; the main 

motivation is to ensure truthful reporting by penalizing false re- 

ports. In Section 7.1 we provide a detailed discussion of this topic. 

The lack of elicitability led to the discussion whether or 

not (and how) it is possible to backtest ES and we refer to 

Carver (2014) , Ziegel (2016) , Acerbi and Székely (2014) and 

Fissler et al. (2015) for further details on this topic. Quite recently 

it was shown in Fissler et al. (2015) that ES is however jointly 

elicitable with V@R. 1 In particular, backtesting ES is possible; see 

Section 8.2 for a backtesting algorithm of ES in our setting; how- 

ever, the results have to be interpreted with care. 

Our article has two objectives. First, we introduce an econom- 

ically motivated definition of unbiasedness: an estimation of risk 

capital is called unbiased , if adding the estimated amount of risk 

capital to the risky position makes the position acceptable; see 

Definition 4.1 . It seems to be surprising that this is not the case for 

estimators considered so far. Second, we want to shed a new light 

on backtesting starting from the viewpoint of the standard Basel 

requirements. The starting point is the simple observation that a 

biased estimation naturally leads to a poor performance in back- 

tests, such that the suggested bias correction should improve the 

results in backtesting. 

In this regard, consider the standard (regulatory) backtest for 

V@R which is based on the rate of exception; see Giot and Lau- 

rent (2003) . In Sections 7 and 8 we will show that a backtesting 

procedure based on the rate of exception will perform poorly if the 

estimation of the rate of exception is biased. Motivated by this, we 

systematically study bias of risk estimators and link our theoretical 

foundation to empirical evidence. 

Let us start with an example: consider i.i.d. Gaussian data 

with unknown mean and variance and assume we are interested 

in estimating V@R at the level α ∈ (0, 1) (V@R α). Denote by x = 

(x 1 , . . . , x n ) the observed data. The unbiased estimator in this case 

is given by 

ˆ V@R 

u 

α(x 1 , . . . , x n ) := −
( 

x̄ + σ̄ (x ) 

√ 

n + 1 

n 

t −1 
n −1 (α) 

) 

, (1.1) 

where t −1 
n −1 

is the inverse of the cumulative distribution function of 

the Student- t -distribution with n − 1 degrees of freedom, x̄ denotes 

the sample mean and σ̄ (x ) denotes the sample standard deviation. 

We call this estimator the Gaussian unbiased estimator and use this 

name throughout as reference to (1.1) . Note that the t -distribution 

arises naturally by taking into account that variance has to be esti- 

mated and that the bias correction factor is 
√ 

n +1 
n . Comparing this 

estimator to standard estimators on NASDAQ data provides some 

motivating insights which we detail in the following paragraph. 

Backtesting value-at-risk estimating procedures 

To analyse the performance of various estimators of value-at- 

risk we performed a standard backtesting procedure. First, we es- 

timated the risk measures using a learning period and then tested 

their adequacy in the backtesting period. The test was based on the 

standard failure rate ( exception rate ) procedure; see e.g. Giot and 

Laurent (2003) and BCBS - Basel Committee on Banking Supervi- 

sion (1996) . Given a data sample of size n , the first k observations 

were used for estimating the value-at-risk at level α. Afterwards it 

was counted how many times the actual loss in the following n − k 

observations exceeded the estimate. For good estimators, we would 

1 Another illustrative and self-explanatory example of this phenomena is 

variance. While not being elicitable, it is jointly elicitable with the mean; 

see Lambert et al. (2008) . 

expect that the number of exceptions divided by (n − k ) should be 

close to α. 

More precisely, we considered returns based on (adjusted) clos- 

ing prices of the NASDAQ100 index in the period from 1999-01-01 

to 2014-11-25. The sample size is n = 40 0 0 , which corresponds to 

the number of trading days in this period. The sample was split 

into 80 separate subsets, each consisting of the consecutive 50 

trading days. The backtesting procedure consisted in using the i th 

subset for estimating the value of V@R 0.05 and counting the num- 

ber of exceptions in the (i + 1) th subset. The total number of ex- 

ceptions in the 79 periods was divided by 79 · 50. We compared 

the performance of the Gaussian unbiased estimator ˆ V@R 

u 

α to the 

three most common estimators of value-at-risk: the empirical sam- 

ple quantile ˆ V@R 

emp 

α (sometimes called historical estimator 2 ); the 

modified Cornish-Fisher estimator ˆ V@R 

CF 

α ; and the classical Gaus- 

sian estimator ˆ V@R 

norm 

α , which is obtained by inserting mean and 

sample variance into the value-at-risk formula under normality: 

ˆ V@R 

emp 

α (x ) := −
(
x (� h � ) + (h − � h � )(x (� h +1 � ) − x (� h � ) ) 

)
, (1.2) 

ˆ V@R 

CF 

α (x ) := −
(
x̄ + σ̄ (x ) ̄Z αCF (x ) 

)
, (1.3) 

ˆ V@R 

norm 

α (x ) := −
(
x̄ + σ̄ (x )�−1 (α) 

)
, (1.4) 

where x ( k ) is the k th order statistic of x = (x 1 , . . . , x n ) , the value 

� z � denotes the integer part of z ∈ R , h = α(n − 1) + 1 , � denotes 

the cumulative distribution function of the standard normal distri- 

bution and Z̄ α
CF 

is a standard Cornish–Fisher α-quantile estimator 

(see e.g. (Alexander, 2009, Section IV.3.4.3) for details). 

The results of the backtest are shown in the first part of Table 1 . 

Surprisingly, the standard estimators show a rather poor perfor- 

mance. Indeed, one would expect a failure rate of 0.05 when us- 

ing an estimator for the V@R 0.05 and the standard estimators show 

a clear underestimation of the risk, i.e. an exceedance rate higher 

than the expected rate. Only the Gaussian unbiased estimator is 

close to the expected rate, the empirical estimator having an ex- 

ceedance rate which is 25% higher in comparison. One can also 

show that a Student- t (plug-in) estimator performs poorly, com- 

pared to Gaussian unbiased estimator. 

To exclude possible disturbances of these findings by a bad fit 

of the Gaussian model to the data or possible dependences we 

additionally performed a simulation study: starting from an i.i.d. 

sample of normally distributed random variable with mean and 

variance fitted to the NASDAQ data we repeated the backtesting 

on this data; results are shown in the second column of Table 1 . 

Let us first focus on the plug-in estimator ˆ V@R 

norm 

α : expecting ap- 

proximately 197 exceedances (5% out of 3.950) we experienced ad- 

ditional 36 exceedances on the NASDAQ data itself. On the simu- 

lated data, where we can exclude disturbances due to fat tails, cor- 

relation etc., still 19 unexpected exceedances were reported which 

is roughly 50% of the additional exceedances on the original data. 

These exceedances are due to the biasedness of the estimator and 

can be removed by considering the unbiased estimator ˆ V@R 

u 

α as 

may be seen from the last line of Table 1 . The results on the other 

estimators confirm these findings, 3 the empirical estimator shows 

2 In fact there are numerous versions of the sample quantile estimator. We have 

decided to take the one used by default both in R and S statistical software for 

samples from continuous distribution. 
3 Further simulations show that these results are statistically significant: for ex- 

ample, repeating the simulation 10.0 0 0 times allows to compute the mean excep- 

tion rates (with standard errors in parentheses) for estimators given in Table 1 . They 

are equal to 0.055 (0.0027), 0.067 (0.0028), 0.056 (0.0026), and 0.050 (0.0027), re- 

spectively. 
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