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a b s t r a c t

Error estimation on optical full field techniques (OFFT) is millstone in the diffusion of OFFT. The present

work describes a generic way to estimate overall error in fringe projection, either due to random

sources (phase error, basically related to the quality of the camera and of the fringe extraction

algorithm) or the bias (calibration errors). Here, a high level calibration procedure based on pinhole

model has been implemented. This model compensates for the divergence effects of both the video-

projector and the camera. The work is based on a Monte-Carlo procedure. So far, the complete models

of the calibration procedure and of a reference experiment are necessary. Here, the reference

experiment consists in multiple step out-of-plane displacement of a plane surface. Main conclusions

of this work are: (1) the uncertainties in the calibration procedure lead to a global rotation of the plane,

(2) the overall error has been calculated in two situations; the overall error ranges from 104 mm down

to 10 mm, (3) the main error source is the phase error even if errors due to the calibration are not

always negligible.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Optical full field techniques (OFFT) are nowadays common
tools in university laboratories. Anyway, the confidence on the
result obtained is poorly described, and error estimation on OFFT
is millstone in their diffusion in industrial world. Usually, the
measuring chain is complex, implying optical elements, numerical
processing (correlation, phase extractiony) and post-processing
(derivation, filteringy). A lot of work has been carried out in order
to improve and/or characterize each element of the measuring
chain, in particular for image correlation [1,2] or phase extraction [3].
Again, some experimental work gives a global sight on errors, see for
example [4,5]. Some work also was done in order to reduce phase
errors (see for example [6]). Anyway, overall measurement error
still never has been achieved, in particular because of the difficulties
to integrate different error sources, among them errors due calibra-
tion procedure. Prediction through error model is not straight-
forward and usually cannot be achieved using standard error
propagation rules. Previous works show the efficiency of Monte-
Carlo based procedure on specific element of the measuring chain.
Description of the error on phase extraction has been provided by
Cordero [7]; post-processing derivation has been investigated in the
same way [8]. Beside these two general purpose works, a study on
3D ESPI leads to an optimal position of illumination vectors [9].

Anyway, no global prediction approach has been carried out to the
best of our knowledge.

Among the different OFFTs, fringe projection is one of the more
spread, since its first development [10–12]. Basically, the method
renders a shape [5] or a shape variation [13]. Coupled with a 2D
correlation system, it can be extended to the measurement of any
displacement of a non-flat surface [14–16]. Since it is a non-
contacting method, a lot of applications are developed or under
development in health engineering (see for example [17–19]).

The present work describes a generic way to estimate overall
error in fringe projection, either due to random sources (phase
error, basically related to the quality of the camera and of the
fringe extraction algorithm) or the bias (calibration errors). Here,
a high level calibration procedure based on pinhole model has
been implemented [18]. This model compensates for the diver-
gence effects of both the video-projector and the camera. The
Monte-Carlo procedure requires complete models of the calibra-
tion procedure and of the reference experiment. Here, the
reference experiment consists in multiple steps out-of-plane
displacement of a plane surface. In order to give boundary values
to the overall error, two different situations are investigated: the
first one is common macroscopic fringe projection set-up. The
second one is a microscopic set-up, optimized for random noise
for example considering a larger set of images in the phase
extraction.

The paper presents first the Monte-Carlo procedure; then, the
specific fringe projection approach is described. Last, the imple-
mentation for a given set of experimental conditions is developed,
results are analyzed.
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2. Monte-Carlo based uncertainty approach

The uncertainty associated with the result of a measurement is
a parameter that characterizes the dispersion of values that can
reasonably be attributed to the measurand. Operationally, the
dispersion of values of some quantity Q is described by a
probability density function (PDF), f(Q). The domain of the PDF
consists of all possible values of Q, and its range is in the interval
(0,1). If the PDF is known, the estimate of Q is obtained by
evaluating the expected value and its standard uncertainty is
taken to be equal to the standard deviation [25].

Although obtaining the most appropriate PDF for a particular
application is not straightforward, if the measurand Q is related to
a set of other quantities P

!
¼ ðP1 � � � PnP

Þ
T through a measurement

model Q ¼Mð P
!
Þ , linear or weakly non-linear, the standard

uncertainty of Q can be expressed in terms of the standard
uncertainties of the input quantities ðP1 � � � PnP

Þ by using the
so-called law of propagation of uncertainties (LPU) [25,26].
Instead of the LPU, a Monte-Carlo-based technique [22–24] can
be applied to linear as well as to nonlinear models, on indepen-
dent or co-varying error sources.

The Monte-Carlo-based technique requires first assigning
probability density functions (PDFs) to each input quantity. Next,
a computer algorithm is set up to generate an input vector
p
!

1 ¼ ðp1 � � �pnP
Þ
T ; each element pj of this vector is generated

according to the specific PDF assigned to the corresponding
quantity Pj. By applying the generated vector p

!
1 to the model

Q ¼Mð P
!
Þ, the corresponding output value q1 can be computed. If

the simulating process is repeated N times (Nc 1), the outcome is
a series of indications ðq1 � � � qNÞ

t whose frequency distribution
allows us to identify the PDF of Q, f(q). Then, irrespective of the
form of this PDF, the estimate qe and its associated standard
uncertainty uðqeÞ can be calculated by

qe ¼
1

N

XN

l ¼ 1

ql ð1Þ

and

uðqeÞ ¼
1

ðN�1Þ

XN

l ¼ 1

ðql�qeÞ
2

 !1=2

ð2Þ

Knowledge of each element of the P
!

vector, in particular the
uncertainty level and the PDF shape, directly derives from the
experimental knowledge. So far, a good understanding of the
whole set-up and procedure is necessary. Here, we suppose that
each error source is independent; anyway, cross-dependent inputs
are possible.

3. The pin-hole model

The classical pin-hole model characterizes the geometrical
relationship between a point in 3D space and its projection on a
plane behind another plane in which an aperture was performed.
This aperture is supposed to be a point (hence the name pinhole).
The Fig. 1 illustrates the principle of the pin-hole model in two
dimensions, as the 3D extrapolation is quite simple. O is the
aperture and Y is the plane in which the aperture was performed,
P is the point in 3D space, xp and yp its coordinate. Q is the
projection of P in the projection plane Y 0, f and yq are its
coordinates. Then, the simple equation yq ¼�f yp=xp describes
the relationship between a point P in 3D space and its projection
Q in 2D plane. The dotted line is called the projection line. This
model is generally used in shape/displacement measurement
systems to account for perspective effects, either for fringe
projection [18,27] or stereo-correlation [28]. Note anyway that

the following work takes into account perspective effects with an
assumption of negligible distortions. In the same way, the optical
model does not take into account off-axis arrangement that
should be found in many video-projectors. These two points can
be considered as the main limitations of the presented work;
anyway, the material used in the following is chosen under these
hypothesis: dedicated low-distortion lenses, and an in line video-
projector.

4. 3D surface implementation

4.1. Principle of fringe projection

The fringe projection method has already been described by
many authors [13,16,17,21]. The physical principle is straightfor-
ward: a periodic pattern is projected on an object; the light is
diffused by the object and captured by a CCD video-camera. The
deformation of the fringes, recorded as phase maps, has a known
dependency to the shape of the illuminated object.

Since the fringe projection technique uses the light diffused by
an object in order to measure its shape or shape variation, a
surface preparation consisting usually in a white paint is some-
times useful. Moreover, in order to observe out-of-plane displace-
ments, the angle between the projected fringes and the observed
diffused light must not be null (Fig. 3). Light intensities on an
object illuminated by a set of fringes can be described by a
periodic function Ili, with a perturbation j corresponding to the
object shape:

Iliðx,yÞ ¼ I0ðx,yÞ 1þgðx,yÞ � cos
2p

pðx,yÞ
yþjðx,yÞ

� �� �
ð3Þ

This equation involves an average intensity I0 and a contrast g.
These values should be constant over the whole map, but some
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Fig. 1. Illustration of the pin-hole model.

Fig. 2. Optical set-up and calibration test-rig.
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