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a b s t r a c t

This work proposes a method for dioptric power mapping of progressive lenses through dual

wavelength, low-coherence digital speckle pattern interferometry. Lens characterization finds several

applications and is extremely useful in the fields of ophthalmology and astronomy, among others. The

optical setup employs two red diode lasers which are conveniently aligned and tuned in order to

generate a synthetic wavelength. The resulting speckle image formed onto a diffusive glass plate

positioned behind the test lens appears covered of contour interference fringes describing the

deformation on the light wavefront due to the analyzed lens. By employing phase stepping and phase

unwrapping methods the wavefront phase was retrieved and then expressed in terms of a Zernike

series. From this series, expressions for the dioptric power and astigmatic power were derived as a

function of the x- and y-coordinates of the lens aperture. One spherical and two progressive lenses were

measured. The experimental results presented a good agreement with those obtained through a

commercial lensometer, showing the potentialities of the method.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Progressive power lenses (PPL) are among the most widely
used solutions for presbyopia and other disorders associated to
the loss of crystalline elasticity. Recent progress in free-form
technologies has been enabled a great improvement of the quality
of such ophthalmic components. If compared with discrete-like
bifocal lenses, the most distinguishing property of PPL is a non-
constant radius of curvature of one of its surfaces, resulting in a
continuous dioptric power distribution. The power increases
toward the lens bottom region, such that the upper part of the
lens is suitable for distant vision and the lower part, for near
vision. In addition, PPL have a region connecting the upper and
lower regions which allows an intermediate range between near
and distant vision. As a consequence of its geometry the pro-
gressive lenses present a progression corridor — also called as
umbilical region [1] — with spherical power and null astigmatism
which are narrower in the region of intermediate vision and
wider in the regions of distant and near vision.

In literature several methods for lens measurement based
either on ray optics or wave optics have been reported [2–9].
However, most of those techniques were capable of characteriz-
ing single-power spherical lenses only. The measurement of

aspherical lenses or spatially dependent power distribution lenses
requires a larger number of factors to be taken into account,
resulting in more sophisticated techniques.

Progressive lenses were traditionally measured by conven-
tional lensometers (also known as focimeters), through which the
dioptric power — or its reciprocal, the focal length — is deter-
mined point-by-point, making the lens evaluation lengthy, cum-
bersome, and limited to spherical power measurement only. With
the increasing acceptance of progressive lenses and the great
improvement of manufacturing techniques a special attention has
been given to the analysis of such lenses, with the introduction of
whole-field techniques. In this scenario the most successfull
method for PPL characterization is based in the Shack–
Hartmann (SH) aberrometer [10–14], which has resulted in the
development of commercial devices. Other techniques, such as
moiré deflectometry [15], crossed-cylinder aberroscopy [16], ray
tracing [17], modified SH scanning laser aberrometry [18], etc.
have been used principally for research purposes.

Whole-field interferometry is a powerful tool for lens char-
acterization [19]. Among the interferometric methods, digital
speckle pattern interferometry (DSPI) is a very well-established
technique whose typical setups are comprised by very simple and
low-cost optical components. It has shown to be a very suitable
technique for whole-field lens analysis, since the spatial resolu-
tion of TV cameras used for image acquisition far exceeds the
typical resolution of the SH aberrometer, which is limited by the
distance between the microlenses of its lens array.
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In this framework the present article proposes a technique for
PPL characterization through dual-wavelength DSPI. Two detuned
diode lasers illuminate the optical setup resulting in a synthetic
wavelength, such that the speckle pattern describing the wave-
front generated by the lens appeared modulated by contour
fringes. After fringe pattern evaluation the wavefront was recon-
structed and its height coordinate was written as a function of a
Zernike series. Those series are formed by an infinite number of
complete sets of polynomials usually written as a function of
polar coordinates r and y. Zernike series are widely used in
ophthalmology and ophthalmologic instruments for aberration
evaluation of the eye or for wavefront data representation in
astronomical telescopes [20–23]. From the obtained height coor-
dinate we derived expressions to evaluate the spherical and the
cylindrical power distribution of the lens and compared the
results with the ones obtained through a commercial PPL lens-
ometer for three lenses.

2. Two-wavelength whole-field digital speckle interferometry

Consider the interference of the reference and object waves
with amplitudes R0 and S0, respectively, originated from lasers
1 and 2 at a CCD sensor. The emission of the lasers are centered at
l1 and l2, such that 9l1�l29{(l1l2)1/2. In order to match the
spatial frequency of the interference pattern to the pixels size of
the CCD sensor, both interfering beams are nearly collinear. Thus,
the resulting light intensity at the CCD has the appearance of a
high-spatial frequency speckle pattern with a strong background
due to the plane reference wave, which significantly lowers the
speckle pattern visibility. This visibility can be enhanced by
means of the subtractive method [24,25], as follows: the first
speckle pattern is acquired and stored, and a sinusoidal jitter
signal is applied to a piezoelectrical transducer supporting one of
the mirrors of the setup in order to decorrelate the speckle
pattern. The pattern in this second configuration is also acquired
and stored. Both frames are then subtracted and low-pass filtered
using FFT (Fast Fourier Transform). Due to the heterodyne speckle
interferometry process, the resulting image intensity I(x,y) of the
object shows a background-free object covered by low-spatial
frequency contour fringes according to [25]:

Iðx,yÞ ¼ I0cos2 p
lS
ðGSðx,yÞ�GRÞ

� �
ð1Þ

where I0 is the bias intensity of the speckle pattern, GSðx,yÞ is the
optical paths of the object wave through point (x,y) on the object
surface, GR is the optical path of the object wave, and
lS � l1l2=9l2�l19 is the synthetic wavelength. Notice that the
equation above was obtained considering that only the waves
originated from the same laser are mutually coherent [26]. Since
the reference wave is planar, the phase ðGS ðx,yÞ�GRÞp=lS

describes the object shape. The contour (bright or dark) fringes
thus correspond to the intersection of the object surface with
parallel, equally spaced planes of constant elevation. The distance
Dz between two adjacent planes, known as contour interval,
depends on the object illumination scheme. In our setup config-
uration using a phase object, one gets Dz¼lS. The illumination
setup also has a strong influence on the direction of the elevation
planes, and it is of crucial importance for a correct reconstruction
of the object wavefront [27].

Fringe pattern evaluation can be carried out through several
phase-shifting techniques [28,29]. In the current work the phase
was obtained through the four-stepping method, which consists
in acquiring and combining four sequentially p/2-phase shifted
interferograms with respect to the synthetic wavelength with
intensities I0, I1, I2, and I3,. In this case, the surface phase dS is

given by

dSðx,yÞ ¼
1

2
arctan

I1�I3

I0�I2

� �
ð2Þ

Since the phase above is defined in the range between �p and
p only, the wavefront is reconstructed by unwrapping the phase
through the branch-cut method [30].

3. Calculation of the spatial power distribution

Consider the transmission of a plane wave through a lens. By
calculating the curvature of the wavefront emerging from the lens
its back focal length — or, correspondingly, its dioptric power —

can
be determined. Ideally perfect, aberration-free spherical lenses
generate spherical wavefronts with an unique radius of curvature
R, which corresponds to an unique power 1/R. However, power-
distributed lenses generate rather complex wavefronts with
different local curvatures, each one corresponding to a local power.

The coordinates H of a point on the wavefront can be written
as a Zernike series. Those series form a complete set of poly-
nomials which are orthogonal inside a circle of unitary radius.
They are usually expressed in terms of polar coordinates r and y
but can also be written as a function of the cartesian coordinates
and weighted by the Zernike coefficients An,m according to
[21,31]:

Hðr,yÞ ¼
X
n,m

An,mZn,mðr,yÞ ð3Þ

The Zernike polynomial Zn,mðr,yÞ is defined as

Zn,mðr,yÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðnþ1Þ

p
Rm

n ðrÞcosðmyÞ for mZ0

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðnþ1Þ

p
Rm

n ðrÞsinðmyÞ for mo0

(
ð4a;4bÞ

The radial function Rm
n ðr,yÞ in turn is written as

Rm
n ðr,yÞ ¼

Xðn�9m9Þ=2

s ¼ 0

ð�1Þsðn�sÞ!

s!½ðnþ9m9Þ=2�s�!½ðnþ9m9Þ=2�s�!
rn�2s ð5Þ

In the formulae above the n value denotes the radial depen-
dence and is a positive integer or zero. The m value represents the
azimuthal degree and relates to n according to m¼�n,�nþ2,
y,n�2,n. The set of coefficients An,m can be obtained from the
orthogonality properties of the Zernike polynomials as

An,m ¼

Z 1

0

Z 2p

�0
Zn,mðr,yÞHðr,yÞrdydr ð6Þ

Since the (cylinder) astigmatism along the x-direction is an
important parameter of a progressive lens, it is convenient to
express the wavefront coordinate H in terms of the cartesian
coordinates x¼rsiny and y¼rcosy.

Once the Zernike polynomials of a given reconstructed wave-
front are obtained, it is possible to calculate the spatial power
distribution. Consider a wavefront emerging from the test lens
expressed in terms of a Zernike series H(x,y) and two light rays p

and q propagating through two neighboring points P(xp,yp) and
Q(xQ,yQ) on the wavefront. Both rays are parallel to n̂P and n̂Q

vectors, which in turn are normal to the reconstructed wavefront.
The plane located to distance f from the wavefront where p and q

rays converge is the focal plane of the lens, so that the local
optical power is written as fPLðx,yÞ ¼ 1=f ðx,yÞ, where point (x,y)
lays at the vicinity of P and Q.

Fig. 1 shows H(x) on plane y¼yp. The vector p
!

x is tangent to
this curve at x¼xp, and is given by p

!
x ¼ i
!
þmxP

k
!

, where
mxP
¼ @HðxÞ=@x9x ¼ xP

. Analogously, the tangent vector to the curve
H(y) on plane x¼xp at the coordinate y¼yp is p

!
y ¼ j
!
þmyP

k
!

,
where myP

¼ @HðyÞ=@y9y ¼ yP
. The normal vector n̂P to the
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