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Abstract

Interferometry is well established as an optical technique in which a measurand is encoded as the phase of a periodically varying

intensity pattern. In view of the inherent accuracy of interferometry, many methods have been developed to retrieve the phase from

images of the fringe pattern. Our focus in this paper is one such technique—the continuous wavelet transform (CWT). We begin by

reviewing the CWT and the space–spatial–frequency localisation properties of wavelets. We show that a path which follows the

maximum modulus of the CWT (the wavelet ridge) gives the instantaneous fringe frequency as a function of spatial displacement. The

phase is automatically and trivially obtained, without discontinuities, by integration. Examples of practical wavelets are given and

algorithms to isolate the wavelet ridge reviewed.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Whole-field optical measurement techniques that encode
a measurand as the phase of a periodically varying intensity
pattern constitute a powerful set of metrology tools. In
general, the two-dimensional fringe pattern Iðx; yÞ so
generated has the form

Iðx; yÞ ¼ I0ðx; yÞ½1þ V ðx; yÞ cosfðx; yÞ�, (1)

where I0 is the background intensity and V the fringe
visibility. We note that non-sinusoidal fringes, such as
those generated by multi-beam interferometers and Moiré
methods, are readily represented by their harmonic
expansions. A great many techniques have been developed
to extract the phase f from an image, or sequence of
images, of the fringe pattern and a review of many of these
may be found in [1]. Perhaps, the best known spatial
technique for extracting phase distributions from a single
image is the Fourier transform method [2,3]. Except in
certain special cases [4], this method requires the fringes to
be modulated onto a spatial carrier. With this proviso,

however, the Fourier transform method converts the
fringe pattern into a complex-valued analytic signal
in the spatial domain through filtering and down conver-
sion in the frequency domain. The phase f is then
obtained, modulo 2p, from the arctangent of the imaginary
part of the analytic signal divided by the real part. The
resulting phase map has discontinuities and requires
unwrapping. In principle, this is a straightforward process.
In practice, however, the phase unwrapping may be
difficult to automate and this has consequently led to
the development of numerous phase unwrapping algo-
rithms [1,5,6].
The continuous wavelet transform (CWT), on the other

hand, provides a spatial phase recovery method that has
several advantages compared to Fourier-based methods. It
may be applied to fringes without [7], or with [8], a spatial
carrier. For the former, it is necessary to have one
additional image, with an arbitrary phase step, in order
to resolve the sign ambiguity associated with the slope. In
either case, the phase can be automatically recovered,
without discontinuities, by integrating the instantaneous
fringe frequency obtained by noting the points in transform
space for which the modulus of the CWT is a maximum.
Finally, the method provides inherent filtering of noisy
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fringes [7] and allows a de-noised version of the fringe to be
reconstructed from the wavelet coefficients [10,11].

In Section 2, we introduce the continuous wavelet
transform and discuss briefly some aspects concerning its
numerical evaluation before providing a few examples of
practical wavelets. Section 3 provides a discussion of the
space–frequency localisation properties of wavelets, per-
mitting the two-dimensional plot of the modulus of the
CWT—the scalogram—to be viewed as the local energy
density of the signal. A path which follows the maximum
modulus of the CWT is termed the wavelet ridge, and in
Section 4 we show that points on the ridge give the
instantaneous fringe frequency. We conclude, in Section 5,
by reviewing methods to isolate the wavelet ridge and
subsequently retrieve the phase.

2. The continuous wavelet transform

We begin by describing some basic features of wavelets
as a prelude to discussing the continuous wavelet transform
and its properties. A wavelet is a function cðxÞ, centred at
x ¼ 0, having a few oscillations that decay to zero such that
[12,13]

Z 1
�1

cðxÞdx ¼ 0. (2)

If ĉðoÞ is the Fourier transform of cðxÞ, then condition (2)
is equivalent to the requirement that ĉð0Þ ¼ 0 [13]. While
some wavelets of practical interest do not meet this
requirement exactly (for example, the Morlet wavelet),
ĉð0Þ is usually sufficiently close to zero to be of little
consequence. Although there is considerable freedom in the
choice of function cðxÞ, not every function that satisfies Eq.
(2) is necessarily a good wavelet. One cycle of a sine wave,
for example, makes a poor wavelet [14]. It is usual to
normalise the amplitude of cðxÞ so that it has unit norm;
kck ¼ 1 where

kcðxÞk2 ¼
Z 1
�1

jcðxÞj2 dx. (3)

A family of wavelets is generated from this ‘‘mother
wavelet’’ by translations and dilations of cðxÞ according to
[12,13]

ca;bðxÞ ¼
1ffiffiffi
a
p c

x� b

a

� �
, (4)

where aa0 and b are real. We note that some authors
choose to scale the wavelet amplitude by 1=a [10,11,15];
however, this choice does not preserve the energy of the
wavelet with scale parameter a. Wavelets with small values
of a have narrow spatial support and consequently rapid
oscillations, making them well adapted to selecting high-
frequency components of a signal. The converse is true for
wavelets with large values of a.

The CWT of a function f ðxÞ is defined as [12,13]

W f ða; bÞ ¼

Z 1
�1

f ðxÞc�a;bðxÞdx, (5)

where � denotes complex conjugation. If f ðxÞ represents a
row (or column) of a fringe pattern, then the CWT is a
three-dimensional surface whose height (proportional to
jW f ða; bÞj) maps the frequency content of f as a function of
position b (pixel number) in position–spatial–frequency
space. Since Eq. (5) is to be evaluated numerically, we note
a few points of practical interest.
In the context of fringe patterns, f has a natural

sampling—the pixel number—and it is sensible therefore
to adopt the same sampling for the translation parameter b;
b! n; n ¼ 0; . . . ;N � 1, where N is the total number
of samples. If the fringe spatial frequencies lie within a
narrow range of scaling parameters ½amin; amax�, a can be
discretised by a! amin þ kDa; k ¼ 0; . . . ;K for some
suitable value of Da. For fringes that cover a wider
frequency range, a common choice is natural or log
sampling for which a ¼ 2m, m an integer, so that the
wavelets become [13]

cm;nðxÞ ¼ 2�m=2cð2�mx� nÞ.

A finer sampling can be obtained by using several ‘‘voices’’
in each octave. This amounts to using several wavelets of
the form

cn
ðxÞ ¼ 2�ðn�1Þ=Nncð2�ðn�1Þ=NnxÞ; n ¼ 1; . . . ;Nn,

where Nn is the number of voices per octave [13,14].
A wavelet that finds frequent application is the Morlet

wavelet [13]

cðxÞ ¼ p�1=4 expðio0xÞ expð�x2=2Þ, (6)

where o0 ¼ pð2= ln 2Þ1=2 � 5:34. In practice, we often set
o0 ¼ 5. This wavelet is sometimes referred to in the
literature as the Gabor wavelet since it bears a resemblance
to the reproducing kernel of the Gabor transform [12].
Two other wavelets of practical interest are the Mexican

hat function (or Laplacian-of-Gaussian)

cðxÞ ¼
2ffiffiffi
3
p

p1=4
ð1� x2Þ expð�x2=2Þ,

and the Paul wavelet [16]

cðxÞ ¼
2nn!ð1� ixÞ�ðnþ1Þ

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nÞ!=2

p ,

where n is the order of the Paul wavelet.

3. Scalograms and space–frequency resolution

The space–frequency resolution of the CWT, Eq. (5),
depends on the spread of ca;bðxÞ in the spatial and
frequency domains. If cðxÞ is centred at x ¼ 0, as
supposed, then ca;bðxÞ is centred at x ¼ b. The spread
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