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a b s t r a c t

We consider the statistical inference for high-dimensional precision matrices. Specifically,
we propose a data-driven procedure for constructing a class of simultaneous confidence
regions for a subset of the entries of a large precision matrix. The confidence regions can
be applied to test for specific structures of a precision matrix, and to recover its nonzero
components. We first construct an estimator for the precision matrix via penalized node-
wise regression.We thendevelop theGaussian approximation to approximate the distribu-
tion of the maximum difference between the estimated and the true precision coefficients.
A computationally feasible parametric bootstrap algorithm is developed to implement the
proposed procedure. The theoretical justification is established under the setting which
allows temporal dependence among observations. Therefore the proposed procedure is
applicable to both independent and identically distributed data and time series data.
Numerical results with both simulated and real data confirm the good performance of the
proposed method.

Crown Copyright© 2018 Published by Elsevier B.V. This is an open access article under
the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

With an ever-increasing capacity of collecting and storing data, industry, business and government offices all encounter
the task of analyzing the data of unprecedented size arisen from various practical fields such as panel studies of economic,
social andnatural (such asweather) phenomena, financialmarket analysis, genetic studies and communications engineering.
A significant feature of these data is that the number of variables recorded on each individual is large or extremely large.
Meanwhile, in many empirical studies, observations taken over different times are dependent with each other. Therefore,
many well-developed statistical inferencemethods for independent and identically distributed (i.i.d.) data may no longer be
applicable. Those features of modern data bring both opportunities and challenges to statisticians and econometricians.

The entries of covariance matrix measure the marginal linear dependence of two components of a random vector. There
is a large body of literature on estimation and hypothesis testing of high-dimensional covariance matrices with i.i.d. data,
including Bickel and Levina (2008a, b), Qiu and Chen (2012), Cai et al. (2013), Chang et al. (2017b) and references within.
In order to capture the conditional dependence of two components of a random vector conditionally on all the others,
the Gaussian graphical model (GGM) has been widely used. Under GGM, conditional independence of two components is
equivalent to the fact that the correspondent entry of the precision matrix (i.e. the inverse of the covariance matrix) is zero.
Therefore, the conditional dependence among components of a random vector can be well understood by investigating
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the structure of its precision matrix. Beyond GGM, the bijection relationship between the conditional dependence and the
precision matrix may not hold. Nevertheless, the precision matrix still plays an important role in, among others, linear
regression (van de Geer et al., 2014), linear prediction and kriging, and partial correlation graphs (Huang et al., 2010). See
also Examples 1–3 in Section 2.

Let Ω denote a p × p precision matrix and p be large. With i.i.d. observations, Yuan and Lin (2007) and Friedman et al.
(2008) adopted graphical Lasso to estimateΩ bymaximizing the likelihoodwith an L1 penalty. Meinshausen and Bühlmann
(2006) introduced a neighborhood selection procedure which estimatesΩ by finding the nonzero regression coefficients of
each component on all the other components using Lasso (Tibshirani, 1996) or Dantzig method (Candes and Tao, 2007). Also
see Cai et al. (2011), Xue and Zou (2012) and Sun and Zhang (2013) for other penalized estimationmethods. Chen et al. (2013)
investigated the theoretical properties of the graphical Lasso estimator for Ω with dependent observations. Though these
methods provide consistent estimators for Ω under some structural assumptions (for example, sparsity) imposed on Ω ,
they cannot be used for statistical inference directly due to the non-negligible estimation biases, caused by the penalization,
which are of order slower than n−1/2.

The bias issue has been successfully overcome with i.i.d. Gaussian observations by, for example, Liu (2013) based on p
node-wise regressions method. Furthermore, Ren et al. (2015) proposed a novel estimator for each entry of Ω based on
pairwise L1 penalized regression, and showed that their estimators achieved the minimax optimal rate with no bias terms.
In spite of p(p−1)

2 pairs among p components, their method in practice only requires at most p(1 + s̄) pairwise L1 penalized
regressions, where s̄ is the average size of the selected node-wise regression models.

The major contribution of this paper is to construct the confidence regions for subsets of the entries of Ω . To our best
knowledge, this is the first attempt of this kind. Furthermore we provide the asymptotic justification under the setting
which allows dependent observations, and, hence, includes i.i.d. data as a special case. See also Remark 2 in Section 3.2.
More precisely, let S ⊂ {1, . . . , p}2 be a given index set of interest, whose cardinality |S| can be finite or grow with p. Let
ΩS be the vector consisting of the entries ofΩ with their indices in S . We propose a class of data-driven confidence regions
{CS,α}0<α<1 for ΩS such that sup0<α<1|P(ΩS ∈ CS,α) − α| → 0 when both n, p → ∞, where n denotes the sample size.
The potential application of CS,α is wide, including, for example, testing for some specific structures ofΩ , and detecting and
recovering nonzero entries ofΩ consistently.

For any matrix A = (aij), let |A|∞ = maxi,j|aij| be its element-wise L∞-norm. We proceed as follows. First we propose
a bias corrected estimator Ω̂S for ΩS via penalized node-wise regressions, and develop an asymptotic expansion for
n1/2(Ω̂S − ΩS ) without assuming Gaussianity. As the leading term in the asymptotic expansion is a partial sum, we
approximate the distribution of n1/2

|Ω̂S − ΩS |∞ by that of the L∞-norm of a high-dimensional normal distributed random
vector with mean zero and covariance being an estimated long-run covariance matrix of an unobservable process. This
normal approximation, inspired by Chernozhukov et al. (2013, 2014), paves theway for evaluating the probabilistic behavior
of n1/2

|Ω̂S − ΩS |∞ by parametric bootstrap.
It is worth pointing out that the kernel estimator for long-run covariances, initially proposed by Andrews (1991) for the

problem with fixed dimension (i.e. p fixed), also works under our setting with p → ∞ without requiring any structural
assumptions on the underlying long-run covariance matrix. Owning to the form of this kernel estimator, the parametric
bootstrap sampling can be implemented in an efficient manner in terms of both computational complexity and the required
storage space; see Remark 4 in Section 3.2.

The rest of the paper is organized as follows. Section 2 introduces the problem to be solved and its background. The
proposed procedure and its theoretical properties are presented in Section 3. Section 4 discusses the applications of our
results. Simulation studies and a real data analysis are reported in Sections 5 and 6, respectively. All the technical proofs are
relegated to the Appendix. We conclude this section by introducing some notation that is used throughout the paper. We
write an ≍ bn to mean 0 < lim infn→∞|an/bn| ≤ lim supn→∞|an/bn| < ∞. We say xn,j = op(an) uniformly over j ∈ J if
maxj∈J |xn,j/an|

p
−→ 0 as n → ∞. Let |·|1 and |·|0 denote, respectively, the L1- and L0-norm of a vector.

2. Preliminaries

Let y1, . . . , yn be n observations from an Rp-valued time series, where yt = (y1,t , . . . , yp,t )T and each yt has the constant
first two moments, i.e. E(yt ) = µ and Cov(yt ) = Σ for each t . LetΩ = Σ−1 be the precision matrix. We assume that {yt} is
β-mixing in the sense that βk → 0 as k → ∞, where

βk = sup
t

E
{

sup
B∈F∞

t+k

⏐⏐P(B|F t
−∞

) − P(B)
⏐⏐}.

Here F t
−∞

and F∞

t+k are the σ -fields generated respectively by {yu}u≤t and {yu}u≥t+k. β-mixing is a mild condition for time
series. It is known that causal ARMA processes with continuous innovation distributions, stationary Markov chains under
some mild conditions and stationary GARCH models with finite second moments and continuous innovation distributions
are all β-mixing. We refer to Section 2.6 of Fan and Yao (2003) for the further details on β-mixing condition.

For a given index set S ⊂ {1, . . . , p}2, recallΩS denotes the vector consisting of the entries ofΩ with their indices in S.
We are interested in constructing a class of confidence regions {CS,α}0<α<1 forΩS such that

sup
0<α<1

⏐⏐P(ΩS ∈ CS,α) − α
⏐⏐ → 0 as n, p → ∞. (1)
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