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a b s t r a c t

Researchers employ the directional distance function (DDF) to estimate multiple-input and multiple-
output production, firm inefficiency, and productivity growth. We relax restrictive assumptions by com-
puting optimal directions subject to profit maximization and cost minimization, correct for the potential
endogeneity of inputs and outputs, estimate latent prices for bad outputs, measure firms’ responses to
shadow prices rather than actual prices, and introduce an unobserved productivity term into the DDF.
For an unbalanced panel of U.S. electric utilities, a model assuming profit-maximization outperforms
one assuming cost-minimization, while lagged productivity and energy price have the greatest effect on
productivity.
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1. Introduction

As developed by Caves et al. (1982a, b), the distance function
(DF) has been widely used to estimate radial representations of
frontier production technologies where firms employ multiple
good inputs to produce multiple good outputs. The distance from
a production frontier is a measure of the firm’s technical efficiency
(TE). The change in this measure over time is efficiency change
(EC), while the shift in the frontier over time is technical change
(TC). The sum of these two measures is productivity change (PC).
The DF is input- (output-) oriented if all inputs (outputs) are
proportionally scaled down (up) to reach the production frontier
while all outputs (inputs) are held constant.

One major shortcoming of the DF is that an entire set of in-
puts or an entire set of outputs must be scaled by the same
factor. This becomes problematic when modeling the generation
of electricity, since good inputs (capital, labor, and energy) and
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bad inputs (such as sulfur) produce good outputs (residential and
industrial/commercial electricity) and bad outputs (pollutants).
Using the DF, the researcher is not able to differentially credit
the firm for simultaneously reducing bad outputs while increas-
ing good outputs. In response, many authors have estimated an
output DF and treated bad outputs like good inputs (holding both
constant). However, this does not credit the firm for reducing bad
outputs. Also, if bad inputs are consumed, no credit is given for
their reduction.1

As an alternative, Chambers (1998) and Chambers et al. (1998)
developed the directional distance function (DDF) which pro-
vides greater flexibility. It allows measurement of unique additive
changes in each input and output through the calculation of dif-
ferent directions of movement for each to reach the production
frontier. If non-zero directions are used to change only inputs
(outputs), the DDF is input- (output-) oriented. When non-zero

1 A bad input like sulfur would be consumed only when it is organically bound
to the coal and oil which are burned to generate electricity. To our knowledge,
only Yaisawarng and Klein (1994) include fuel sulfur content and sulfur dioxide
emissions in a study of electric utility production.
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directions are used to change all inputs and outputs, the DDF is
technology-oriented.

Despite the greater flexibility of the DDF, researchers typically
impose three overly-restrictive assumptions. First, the researcher
usually specifies arbitrary directions of movement of current firm
production toward the frontier tomeasure inefficiency.2 However,
different directions of movement toward the frontier will generate
different measures of inefficiency. Three Data Envelopment Anal-
ysis (DEA) studies seek to avoid arbitrary assignment of directions
by using linear programming methods to choose directions that
maximize the measured distance (i.e., technical inefficiency) of the
firm relative to a DDF. The first, by Färe et al. (2013), considers
only good inputs and good outputs. The second, by Hampf and
Krüger (2015), extends this analysis by including bad outputs. The
stated goal of the third paper, by Zofio et al. (2013), is to compute
optimal directions consistent with a firm’s profit-maximization
(PM) position on a DDF. They assume that firms are currently profit-
maximizers and then measure the maximum distance from the
current position. However, tomeasure the technology and produc-
tivity at the PM position, one must estimate the DDF jointly with
the first-order conditions for PM. Since the latter are not included
in their optimization model, the estimated directions cannot be
consistent with PM. In this paper we estimate these conditions
jointly with the DDF and compute directions consistent with PM,
which we term ‘‘optimal-PM’’ directions.

Our approach follows Chambers (1998), who formulates a PM
problem which includes a technology-oriented DDF (to measure
the distance from the production frontier), and derives the first-
order price equations for good inputs and outputs. In order to
compute optimal-PM directions, Atkinson and Tsionas (2016) (AT)
estimate the DDF jointly with the first-order price equations for
only good inputs and good outputs, since the prices of bad out-
puts and bad inputs are missing. A complete set of utility-specific
pollution permit prices (shadow prices for bad outputs) for the
years of our sample data does not exist. As explained below, the
prices of coal and oil include rebates for greater amounts of the bad
input, sulfur. However, data is not publicly available to compute
a hedonic price for sulfur.3 We generalize AT by assuming a data
generating process for latent prices of regulated bad outputs. These
latent prices replace missing actual prices, allowing us to add the
first-order price equations for regulated bad outputs to the AT
system.

The second restrictive assumption of many DDF models is that
all input and output quantities are exogenous. Highly-influential
papers by Olley and Pakes (1996) (OP) and Levinsohn and Petrin
(2003) (LP) consider the problem of estimating productivity in
the presence of endogenous inputs using panel data. Both papers
estimate a single-output Cobb–Douglas production function with
a two-component random error term. The first component is firm-
and time-varying productivity that is unobserved by the econo-
metrician but observed, at least in part, by the firm. Since the
firm takes productivity into account to some degree in choosing
its inputs, endogeneity results. The second random component
is an idiosyncratic error that is assumed to be uncorrelated with
the explanatory variables and the productivity component. With
the OP approach, the econometrician proxies for the unobserved
productivity component with a potentially observable function. To
obtain this function, OP first specify that investment is amonotonic
function of productivity for a given level of capital and vintage.
They then invert this function to obtain the productivity com-
ponent as a proxy function of capital, investment, and vintage.

2 For example, assuming fixed directions, Färe et al. (2005) estimate an output
DDF for electric utilities involving good inputs, a good output, and a bad output.
3 In the more typical industry study, prices of all inputs are missing and our

methodology can be employed to estimate their first-order price equations having
generated their estimated latent prices.

Following OP, LP replace investment with materials and solve for
the productivity component as a proxy function of capital, mate-
rials, and vintage. Productivity is assumed to follow a first-order
Markov process. After discussing the modification of OP and LP by
Ackerberg et al. (2015) (regarding when the firm chooses labor),
Wooldridge (2009) provides the exact set of moment conditions
required to identify each of these models, where instruments are
subsets of current and lagged inputs. However, as Griliches and
Mairesse (1998) stress, if the econometrician incorrectly specifies
the productivity function, some degree of endogeneity remains.
Both OP and LP recognize the possible invalidity of their instru-
ments as well as the typical validity but unavailability of input and
output prices as instruments.

In this paper, we avoid assuming that inputs are exogenous
for electric utilities. In our sample, they vary input choice over
time and these choices are arguably correlated with the idiosyn-
cratic error term, when one misspecifies the proxy equation for
productivity. This results in the endogeneity of input quantities.
Such a result potentially applies to all input quantities with a cost-
minimization (CM) model and to all input and output quantities
with a PM model. Instead, we utilize the prices of good inputs
and good outputs in our instrument set, since they are arguably
exogenous. Utilities are price takers in input markets, since these
markets are national (due to trans-continental oil and natural gas
pipelines, trans-continental rail lines hauling coal and oil, and
national mobility of labor and capital). Regulated utilities, which
comprise the vast majority of our sample, face output prices that
are set by regulatory commissions. The smaller number of restruc-
tured utilities face market-determined prices for good inputs and
outputs.4 Thus, for both types of firms, we employ input and
output prices rather than input quantities in our instrument set.

The third restrictive assumption with all previous DDF models
is that actual prices equal shadow (perceived) prices for the firm.5 If
the two sets of prices differ, the researcher must calculate optimal
directions using shadow prices. Previous papers have developed
the methodology to estimate shadow prices for profit, cost, and
distance functions as summarized in Kumbhakar and Lovell (2000).
However, our paper is the first to estimate shadow prices using
a DDF and the first-order price equations from PM. We identify
shadow prices by including input and firm-specific price ineffi-
ciency parameters in these equations. These parameters are esti-
mated jointly with optimal-PM directions.

In addition, this paper is the first to estimate a model free of
these three restrictive assumptions and, at the same time, explain
the sources of firm productivity, without resorting to inconsistent
two-step methods. Typically the two steps are: (1) regress output
on a set of inputs and (2) regress the residuals on a set of explana-
tory variables that were omitted from the first step. The two sets
of variablesmust be uncorrelated to avoid a potentially substantial
bias.6 We avoid this improbable requirement by employing an
unrestricted profit function from which we derive productivity
as an estimable function of lagged productivity, profits, prices of
inputs and outputs, vintage, and time. We include this measure of
productivity as an input in the DDF. This enables us to compute the
partial elasticities of productivitywith respect to its arguments and
decompose productivity growth.

4 The goal of deregulation was to increase competition, yielding greater TE,
productivity growth, and price efficiency. On the production frontier, the profit-
maximizing firm achieves price efficiency when the price of each input equals
the value of its marginal product. The cost-minimizing firm achieves allocative
efficiency when ratios of input prices equal ratios of their marginal products.
5 Reasons for deviations of shadow from actual prices include tax write-offs,

rate-of-return regulation, and constraints imposed by regulatory agencies or labor
unions.
6 See Wang and Schmidt (2002) for details on Monte Carlo experiments indicat-

ing substantial potential bias in both steps.
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