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a b s t r a c t

In this work we present a new family of computationally simple texture descriptors, referred to as

binary gradient contours (BGC). The BGC methodology relies on computing a set of eight binary

gradients between pairs of pixels all along a closed path around the central pixel of a 3�3 grayscale

image patch. We developed three different versions of BGC features, namely single-loop, double-loop

and triple-loop. To quantitatively assess the effectiveness of the proposed approach we performed an

ensemble of texture classification experiments over 10 different datasets. The obtained results make it

apparent that the single-loop version is the best performer of the BGC family. Experiments also show

that the single-loop BGC texture operator outperforms the well-known LBP. Statistical significance of

the achieved accuracy improvement has been demonstrated through the Wilkoxon signed rank test.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Texture analysis plays an important role in computer vision
and pattern recognition. Tumor detection in medical imaging for
computer-aided diagnosis, automated surface inspection for
industrial quality control and terrain classification through the
analysis of remote sensed imagery are just some of the applica-
tions in which textural information can be successfully exploited.
Texture analysis techniques have been recently extended to study
dynamic events such as recognition of facial expression [1] or
monitoring of paint drying process [2]. Texture descriptors are
traditionally classified into four categories: statistical, model-
based, geometrical and signal processing methods [3,4]. Among
these categories, statistical methods have become very popular,
mainly because they provide good accuracy at an affordable
computational cost. The rationale behind statistical texture
description is that texture can be represented through the joint
distribution of pixel intensities in a local neighborhood. Based on
this assumption, a stationary texture image (i.e., an image that
contains a single type of texture) could be ideally characterized by
means of the probability distribution of the possible grayscale
patterns. This probability can be estimated by a histogram that
measures the occurrence frequency of the different grayscale
patterns throughout the image. To compute such a histogram,
the image is scanned by one-pixel steps with a sliding window,

and at each window position the bin corresponding to the
detected pattern is incremented by one unit. Although this
approach results attractive for its conceptual simplicity,
a straightforward application of the method is impractical, since
the number of entries in the histogram is overwhelmingly large
even for small neighborhoods. To cope with multidimensional
histograms it is useful to partition the feature space into a
discrete vocabulary of local features [5]. It has been recently
proposed to reduce the dimension of the histogram through
unsupervised clustering of grayscale patterns into a dictionary
of textons [6]. Reported results show that this method achieves
high success rates in texture classification experiments. However,
clustering has a number of drawbacks: dependency of the texton
dictionary upon the texture samples used to train the classifier,
influence of parameter tuning on classification accuracy, and large
computational overhead (especially when large neighborhoods
are considered). An alternate approach to partition the feature
space is through a closed-form mapping [7]. Mapping-based
histogram reduction does not have the drawbacks of clustering,
since these schemes define a universal vocabulary of textural
features, are parameter-free and compute fast. Several mappings
have been proposed by diverse research groups [8–14]. Despite all
of these implementations share the same underlying principle, to
the best of our knowledge they have not been yet integrated into
a general framework. In this paper we present such a unifying
framework. Our claim is that these apparently diverging dimen-
sionality reduction schemes can be interpreted as a mapping from
the set of grayscale patterns to a set of integer indexes. This
mapping induces a partition of the set of grayscale patterns into
groups of equivalent patterns. Dimensionality reduction is
achieved by merging the occurrence frequencies of equivalent
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patterns into a single histogram bin. We used this mapping-based
framework to describe a novel family of texture descriptors,
called binary gradient contours (BGC), which consider the binary
gradient of the grayscale values along the eight peripheral pixels
of a 3�3 window. In this class of models a texture is described
through the occurrence frequency of the resulting binary
8-tuples. The effectiveness of BGC features has been experimen-
tally demonstrated through an ensemble of texture classification
experiments. We have found that one out of the three proposed
BGC models is more efficient in discriminating texture than the
well-known LBP model.

The remaining of the paper is organized as follows. In Section 2,
we present a general framework for texture description based
on pattern mapping. Section 3 is devoted to describe the novel
family of texture descriptors. The purpose of Section 4 is three-
fold. The first is to compare the proposed features with the closely
related local binary pattern (LBP) concept. The second is to
introduce some theoretical considerations to justify the efficiency
of our approach. The third is to comparatively analyze the
characteristics of the texture descriptors considered in this work.
Experimental results are shown in Sections 5, and Section 6
summarizes the main conclusions that can be drawn from
our work.

2. Framework for texture description based on pattern
mapping

To describe the proposed framework, we shall begin by
defining the notation to be used henceforth. Let I be a matrix of
M rows and N columns representing the raw pixel intensities of
an image quantized to G gray-levels, and Im,nAf0,1, . . . ,G�1g the
pixel intensity corresponding to the m-th row and n-th column.
We denote by Sm,n a square crop of 3�3 pixels centered at pixel
(m,n) of image I:

Sm,n ¼

Im�1,n�1 Im�1,n Im�1,nþ1

Im,n�1 Im,n Im,nþ1

Imþ1,n�1 Imþ1,n Imþ1,nþ1

2
64

3
75 ð1Þ

Without loss of generality we can rename the terms of the
equation above in order to remove the dependance on (m,n).
Thus, let S be a matrix representing the pixel intensities of a
generic square neighborhood with support 3�3. Let Ic be the
gray-level of the central pixel and Ij the gray-levels of the
peripheral pixels ðjAf0,1, . . . ,7gÞ, which are arranged as follows
(see Fig. 1(a)):

S¼

I7 I6 I5

I0 Ic I4

I1 I2 I3

2
64

3
75 ð2Þ

Let us denote by M3�3,G the set of all the possible instances
defined by Eq. (2). A typical value for G is 28 (i.e., pixel intensity is
quantized in 256 levels) since the depth of digitization of most
commercial imaging devices is 8 bits. It readily follows that in this

case the number of different 3�3 grayscale patterns is given by

#M3�3,256 ¼ 272
ð3Þ

where # stands for ‘‘cardinality of’’. It emerges from Eq. (3) that
the texture description through the joint distribution of pixel
intensity over a 3�3 neighborhood involves a huge feature vector
of roughly 4.7�1021 components. Suppose that one intends to
describe a texture image through the occurrence frequency of
3�3 grayscale patterns. Provided that the number of possible
patterns is several orders of magnitude greater than the number
of image pixels, even for high resolution imagery, the vast
majority of histogram bins would remain empty. It is well-known
that such extremely sparse, ultra high dimensional histograms
provide an unreliable estimation of the underlying distribution
and have negligible discriminant power in image description [15].
Moreover, the memory required to store one of such histograms
would largely exceed the capacity of the currently available
computers. The simplest way to reduce the joint histogram
dimensionality would be by decreasing G. However, as the
neighborhood size increases, the number of bins grows exponen-
tially and soon far outweighs the number of datapoints available
in a single image with which to populate the histogram. To tackle
such ultra high dimensional feature space we propose to partition
M3�3,G into groups of patterns. Dimensionality reduction is
straightforwardly attained by merging the histogram bins corre-
sponding to patterns belonging to the same group into a single
bin. The partition can be adequately formalized through a map-
ping that assigns each pattern a non-negative integer index that
uniquely identifies the group the pattern belongs to

f :M3�3,G�!N

S/k¼ f ðSÞ ð4Þ

The function above establishes an equivalence relation inM3�3,G,
denoted by � :

S1 � S23f ðS1Þ ¼ f ðS2Þ 8S1,S2AM3�3,G ð5Þ

Let Q be the range of f [16]

Q¼ f ðM3�3,GÞ ð6Þ

and q the number of different groups of patterns, i.e., the number
of equivalence classes:

q¼#Q ð7Þ

The partition can be therefore expressed as

M3�3,G ¼
[

kAQ
Mf ,k ð8Þ

where the family of subsets fMf ,kjkAQg is pairwise disjoint, and
each subset is defined by

Mf ,k ¼ fSAM3�3,Gjf ðSÞ ¼ kg ð9Þ

In the proposed framework, the mapping f makes it possible to
represent a texture image I by a q-dimensional vector hf(I) in
which the k-th component is given by

hf ,kðIÞ ¼
#fðm,nÞjf ðSm,nÞ ¼ kg

ðM�2Þ � ðN�2Þ
ð10Þ

It is useful to note that in order for sub-image Sm,n to be fully
enclosed into I, the crop center cannot be located at the one-pixel
width periphery of the image, and therefore Eq. (10) must satisfy
that 2rmrM�1 and 2rnrN�1.

3. Binary gradient contours

We define the binary gradient contour of a 3�3 grayscale
image patch as the binary 8-tuple that results of a two-step

Fig. 1. (a) Spatial arrangement of a 3�3 grayscale pattern and schematic

representation of the texture models considered in this paper, (b) single-loop,

(c) double-loop, and (d) triple-loop versions of the binary gradient contour

concept, and (e) layout of the well-known local binary pattern.
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