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a b s t r a c t

The issue addressed in this paper is that of testing for common breaks across or within equations of a
multivariate system. Our framework is very general and allows integrated regressors and trends as well
as stationary regressors. The null hypothesis is that breaks in different parameters occur at common
locations and are separated by some positive fraction of the sample size unless they occur across different
equations. Under the alternative hypothesis, the break dates across parameters are not the same and
also need not be separated by a positive fraction of the sample size whether within or across equations.
The test considered is the quasi-likelihood ratio test assuming normal errors, though as usual the limit
distribution of the test remains valid with non-normal errors. Of independent interest, we provide results
about the rate of convergence of the estimates when searching over all possible partitions subject only to
the requirement that each regime contains at least as many observations as some positive fraction of the
sample size, allowing break dates not separated by a positive fraction of the sample size across equations.
Simulations show that the test has good finite sample properties. We also provide an application to issues
related to level shifts and persistence for various measures of inflation to illustrate its usefulness.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Issues related to structural change have been extensively stud-
ied in the statistics and econometrics literature (see Csörgö and
Horváth, 1997; Perron, 2006 for comprehensive reviews). In the
last twenty years or so, substantial advances have beenmade in the
econometrics literature to covermodels at a level of generality that
makes them relevant across time-series applications in the context
of unknown change points. For example, Bai (1994, 1997) studies
the least squares estimation of a single change point in regressions
involving stationary and/or trending regressors. Bai and Perron
(1998, 2003) extend the testing and estimation analysis to the case
of multiple structural changes and present an efficient algorithm.
Hansen (1992) and Kejriwal and Perron (2008) consider regres-
sions with integrated variables. Andrews (1993) and Hall and
Sen (1999) consider nonlinear models estimated by generalized
method of moments. Bai (1995, 1998) studies structural changes
in least absolute deviation regressions, while Qu (2008), Su and
Xiao (2008) and Oka and Qu (2011) analyze structural changes in
regression quantiles. Hall et al. (2012) and Perron and Yamamoto
(2014, 2015) consider structural changes in linear models with
endogenous regressors. Studies about structural changes in panel
data models include Bai (2010), Kim (2011), Baltagi et al. (2016)
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and Qian and Su (2016) for linear panel data models and Breitung
and Eickmeier (2011), Cheng et al. (2016), Corradi and Swanson
(2014), Han and Inoue (2015) and Yamamoto and Tanaka (2015)
for factor models.

The literature on structural breaks in a multiple equations
system includes Bai et al. (1998), Bai (2000) and Qu and Perron
(2007), among others. Their analysis relies on a common breaks
assumption, under which breaks in different basic parameters
(regression coefficients and elements of the covariance matrix of
the errors) occur at a common location or are separated by some
positive fraction of the sample size (i.e., asymptotically distinct).1
Bai et al. (1998) assume a single common break across equations
for a multivariate system with stationary regressors and trends as
well as for cointegrated systems. For the case of multiple com-
mon breaks, Bai (2000) analyzes vector autoregressive models
for stationary variables and Qu and Perron (2007) cover multiple
system equations, allowing for more general stationary regressors
and arbitrary restrictions across parameters. Under the framework
of Qu and Perron (2007), Kurozumi and Tuvaandorj (2011) pro-
pose model selection procedures for a system of equations with
multiple common breaks and Eo and Morley (2015) consider a
confidence set for the common break date based on inverting the

1 The concept of common breaks here is quite distinct from the notion of co-
breaking or co-trending (e.g., Hatanaka and Yamada, 2003; Hendry and Mizon,
1998). In this literature, the focus is on whether some linear combination of series
with breaks do not have a break, a concept akin to that of cointegration.
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likelihood ratio test. In this literature, it has been documented that
common breaks allow more precise estimates of the break dates
in multivariate systems. Given unknown break dates, however, an
issue of interest for most applications concerns the validity of the
assumption of common breaks.2 To our knowledge, no test has
been proposed to address this issue.

Our paper addresses three outstanding issues about testing for
common breaks. First, we propose a quasi-likelihood ratio test
under a very general framework.3 We consider a multiple equa-
tions system under a likelihood framework with normal errors,
though the limit distribution of the proposed test remains valid
with non-normal, serially dependent and heteroskedastic errors.
Our framework allows integrated regressors and trends as well as
stationary regressors as in Bai et al. (1998) and also accommodates
multiple breaks and arbitrary restrictions across parameters as
in Qu and Perron (2007). Thus, our results apply for general
systems of multiple equations considered in existing studies. A
case not covered in our framework is when the regressors depend
on the break date. This occurs when considering joint segmented
trends and this issue was analyzed in Kim et al. (2017).

Second, we propose a test for common breaks not only across
equations within a multivariate system, but also within an equa-
tion. As in Bai et al. (1998), the issue of common breaks is often
associated with breaks occurring across equations, whereas one
may want to test for common breaks in the parameters within
a regression equation, whether a single equation or a system of
multiple equations are considered. More precisely, the null hy-
pothesis of interest is that some subsets of the basic parameters
share one or more common break dates, so that each regime is
separated by some positive fraction of the sample size. Under the
alternative hypothesis, the break dates are not the same and also
need not be separated by a positive fraction of the sample size, or
be asymptotically distinct.

Third, we derive the asymptotic properties of the quasi-
likelihood and the parameter estimates, allowing for the possibility
that the break dates associated with different basic parameters
may not be asymptotically distinct. This poses an additional layer
of difficulty, since existing studies establish the consistency and
rate of convergence of estimators only when the break dates are
assumed to either have a common location or be asymptotically
distinct, at least under the level of generality adopted here. More-
over, we establish the results in the presence of integrated regres-
sors and trends as well as stationary regressors. This is by itself a
noteworthy contribution. These asymptotic results will allow us
to derive the limit distribution of our test statistic under the null
hypothesis and also facilitate asymptotic power analyses under
fixed and local alternatives.We can show that our test is consistent
under fixed alternatives and also has non-trivial local power.

There is one additional layer of difficulty compared to Bai
and Perron (1998) or Qu and Perron (2007). In their analysis, it
is possible to transform the limit distribution so that it can be
evaluated using a closed form solution and thus critical values can
be tabulated. Here, no such solution is available and we need to
obtain critical values for each case through simulations. This in-
volves simulating theWiener processes with consistent parameter

2 The common breaks assumption is also used in the literature on panel data (e.g.
Bai, 2010; Kim, 2011; Baltagi et al., 2016). In this paper, we consider a multiple
equations system in which the number of equations are relatively small, and thus
panel data models are outside our scope. However, testing for common breaks
in a system with a large number of equations is an interesting avenue for future
research.
3 One may also consider other type of tests, such as LM-type tests. The literature

on structural breaks, however, documents that even though LM-type tests have
simple asymptotic representations, they tend to exhibit poor finite sample prop-
erties with respect to power. Thus, this paper focuses on the LR test (see Deng and
Perron, 2008; Kim and Perron, 2009; Perron and Yamamoto, 2016, for instance).

estimates and evaluating each realization of the limit distribution
with and without the restriction of common breaks. While it is
conceptually straightforward and quick enough to be feasible for
common applications, the procedure needs to be repeated many
times to obtain the relevant quantities and can be quite com-
putationally intensive. This is because we need to search over
many possible combinations of all the permutations of the break
locations for each replication of the simulations. To reduce the
computational burden, we propose an alternative procedure based
on the particle swarmoptimizationmethoddevelopedby Eberhart
and Kennedy (1995) with the Karhunen–Loève representation of
stochastic processes. Our simulation results suggest that the test
proposed has reasonably good size and power performance even in
small samples under both computation procedures. Also, we apply
our test to inflation series, following the work of Clark (2006) to
illustrate its usefulness.

The remainder of the paper is as follows. Section 2 introduces
the models with and without the common breaks assumption
and describes the estimation methods under the quasi-likelihood
framework. Section 3 presents the assumptions and asymptotic
results including the asymptotic null distribution and asymptotic
power analyses. Section 4 examines the finite sample properties
of our procedure via Monte Carlo simulations. Section 5 presents
an empirical application and Section 6 concludes. Appendix A
contains all the proofs.

2. Models and quasi-likelihood method

In this section, we first introduce models for a multiple equa-
tions system with and without common breaks. Subsequently, we
describe the quasi-likelihood estimationmethod assuming normal
errors and then propose the quasi-likelihood ratio test for common
breaks. For illustration purpose, we also discuss some examples.

As a matter of notation, ‘‘
p

→ ’’ denotes convergence in probabil-
ity, ‘‘

d
→’’ convergence in distribution and ‘‘⇒’’ weak convergence

in the spaceD[0,∞) under the Skorohod topology.WeuseR,Z and
N to denote the set of all real numbers, all integers and all positive
integers, respectively. For a vector x, we use ∥ · ∥ to denote the
Euclidean norm (i.e., ∥x∥ =

√
x′x), while for a matrix A, we use

the vector-induced norm (i.e., ∥A∥ = supx̸=0∥Ax∥/∥x∥). Define the
Lr -norm of a random matrix X as ∥X∥r = (

∑
i
∑

jE
⏐⏐Xij
⏐⏐r )1/r for

r ≥ 1. Also, a ∧ b = min{a, b} and a ∨ b = max{a, b} for
any a, b ∈ R. Let ◦ denote the Hadamard product (entry-wise
product) and let ⊗ denote the Kronecker product. Define 1{·} as
the indicator function taking value one when its argument is true,
and zero otherwise and ei as a unit vector having 1 at the ith entry
and 0 for the others. We use the operator vec(·) to convert a matrix
into a column vector by stacking the columns of thematrix and the
operator tr(·) to denote the trace of amatrix. The largest integer not
greater than a ∈ R is denoted by [a] and the sign function is defined
as sgn(a) = −1, 0, 1 if a > 0, a = 0 or a < 0, respectively.

2.1. The models with and without common breaks

Let the data consist of observations {(yt , xtT )}Tt=1, where yt is an
n × 1 vector of dependent variables and xtT is a q × 1 vector of
explanatory variables for n, q ∈ N with a subscript t indexing a
temporal observation and T denoting the sample size. We allow
the regressors xtT to include stationary variables, time trends and
integrated processes, while scaling by the sample size T so that the
order of all components is the same. In what follows, we consider

xtT =
(
z ′

t , ϕ(t/T )
′, T−1/2w′

t

)′
.
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