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a b s t r a c t

I analyze a linear instrumental variablesmodelwith a single endogenous regressor andmany instruments.
I use invariance arguments to construct a new minimum distance objective function. With respect to a
particular weight matrix, the minimum distance estimator is equivalent to the random effects estimator
of Chamberlain and Imbens (2004), and the estimator of the coefficient on the endogenous regressor
coincides with the limited information maximum likelihood estimator. This weight matrix is inefficient
unless the errors are normal, and I construct a new, more efficient estimator based on the optimal
weight matrix. Finally, I show that when the minimum distance objective function does not impose a
proportionality restriction on the reduced-form coefficients, the resulting estimator corresponds to a
version of the bias-corrected two-stage least squares estimator. I use the objective function to construct
confidence intervals that remain valid when the proportionality restriction is violated.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

This paper provides a principled and unified way of doing
inference in a linear instrumental variables model with a sin-
gle endogenous regressor and homoscedastic errors in which the
number of instruments, kn, is potentially large. To capture this fea-
ture in asymptotic approximations, I employ the many instrument
asymptotics of Kunitomo (1980), Morimune (1983), and Bekker
(1994) that allow kn to increase in proportionwith the sample size,
n. I focus on the case in which collectively the instruments have
substantial predictive power, so that the concentration parameter
grows at the same rate as the sample size. I make no assumptions
about the strength of individual instruments. I allow the rate of
growth of kn to be zero, in which case the asymptotics reduce to
the standard few strong instrument asymptotics.

The presence ofmany instruments creates an incidental param-
eters problem (Neyman and Scott, 1948), as the number of first-
stage coefficients, kn, increases with the sample size. To directly
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address this problem, I use sufficiency and invariance arguments
together with an assumption that the reduced-form errors are
normally distributed to reduce the data to a pair of two-by-two
matrices. In the absence of exogenous regressors, the first matrix
can be written as T =

(
y x

)′PZ(y x
)
/n, where PZ is the projection

matrix of the instruments Z , and y and x are vectors corresponding
to the outcome and the endogenous regressor. The second matrix,
S =

(
y x

)′(In − PZ )
(
y x

)
/(n − kn), where In is the identity,

corresponds to an estimator of the reduced-form covariance ma-
trix. This solves the incidental parameters problem because the
distribution of T and S depends on a fixed number of parameters
even as kn → ∞: it depends on the first-stage coefficients only
through the parameter λn, a measure of their collective strength.

I then drop the normality assumption and use a restriction
on the first moment of T implied by the model to construct a
minimumdistance (md) objective function. This restriction follows
from the property of the instrumental variables model that the
coefficients on the instruments in the first-stage regression are
proportional to the coefficients in the reduced-form outcome re-
gression. I use this md objective function to derive three main
results.

First, I show that minimizing the md objective function with
respect to the optimal weight matrix yields a new estimator of
β , the coefficient on the endogenous regressor, that exhausts the
information in T and S. In particular, this efficient md estimator is
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asymptotically more efficient than the limited information max-
imum likelihood (liml) estimator when the reduced-form errors
are not normal. Standard errors can easily be constructed using the
usual sandwich formula for asymptotic variance of minimum dis-
tance estimators.1 The md approach thus gives a simple practical
solution to the many-instrument incidental parameters problem.

Second, I compare the md approach to that based on the in-
variant likelihood—the likelihood, under normality, based on T
and S. I show that, when combined with a particular prior on
λn, the likelihood is equivalent to the random-effects (re) quasi-
maximum likelihood of Chamberlain and Imbens (2004), and that
maximizing it yields liml. Therefore, the random-effects estimator
ofβ is in fact equivalent to liml. Furthermore, I show that the re es-
timator of the model parameters also minimizes the md objective
function with respect to a particular weight matrix. This weight
matrix is efficient under normality, but not in general.

Third, I consider minimum distance estimation that leaves the
first moment of T unrestricted. This situation arises, for instance,
when the instrumental variables model is used to estimate po-
tentially heterogeneous causal effects, as in Angrist and Imbens
(1995).When the causal effect is heterogeneous, the reduced-form
coefficients are no longer proportional, so that the first moment of
T is unrestricted. In this case, the instrumental variables estimand
β can be interpreted as a weighted average of the marginal effect
of the endogenous variable on the outcome (Angrist et al., 2000). I
show that the unrestricted minimum distance estimator coincides
with a version of the bias-corrected two-stage least squares esti-
mator (Nagar, 1959; Donald andNewey, 2001), and use themd ob-
jective function to construct confidence intervals that remain valid
when the proportionality restriction is violated.

The md objective function is also helpful in deriving a spec-
ification test that is robust to many instruments. By testing the
restriction on the first moment of T , I derive a new test that is
similar to that of Cragg and Donald (1993), but with an adjusted
critical value. The adjustment ensures that the test is valid under
few strong as well as many instrument asymptotics that also allow
for many regressors. In contrast, when the number of regressors
is allowed to increase with the sample size, the size of the stan-
dard Sargan (1958) specification test converges to one, as does the
size of the test proposed by Anatolyev and Gospodinov (2011).

The paper draws on two separate strands of literature. First, the
literature on many instruments that builds on the work by Ku-
nitomo (1980), Morimune (1983), Bekker (1994) and Chao and
Swanson (2005). Like Anatolyev (2013), I relax the assumption
that the dimension of regressors is fixed, and I allow them to
grow with the sample size. Hahn (2002), Chamberlain (2007),
Chioda and Jansson (2009), and Moreira (2009) focus on optimal
inference with many instruments when the errors are normal and
homoscedastic, and my optimality results build on theirs. Papers
by Hansen et al. (2008), Anderson et al. (2010) and van Hasselt
(2010) relax the normality assumption. Hausman et al. (2012),
Chao et al. (2012), Chao et al. (2014) and Bekker and Crudu (2015)
also allow for heteroscedasticity. An interesting new development
is to employ shrinkage or regularization to solve the incidental
parameters problem (see, for example, Belloni et al., 2012; Gautier
and Tsybakov, 2014; or Carrasco, 2012). When combined with ad-
ditional assumptions on themodel, these shrinkage estimators can
be more efficient than the efficient md estimator proposed here.

Second, the literature on incidental parameters dating back
to Neyman and Scott (1948). Lancaster (2000) and Arellano (2003)
discuss the incidental parameters problem in a panel data con-
text. Chamberlain and Moreira (2009) relate invariance and ran-
dom effects approaches to the incidental parameters problem in a

1 Software implementing estimators and standard errors based on themd objec-
tive function is available at https://github.com/kolesarm/ManyIV.

dynamic panel datamodel. My results on the relationship between
these two approaches in an instrumental variables model build
on theirs. Sims (2000) proposes a similar random-effects solution
in a dynamic panel data model. Moreira (2009) proposes to use
invariance arguments to solve the incidental parameters problem.

The remainder of this paper is organized as follows. Section 2
sets up the instrumental variables model, and reduces the data
to the T and S statistics. Section 3 considers likelihood-based
approaches to inference under normality. Section 4 relaxes the
normality assumption and considers themd approach to inference.
Section 5 considersmd estimationwithout imposing proportional-
ity of the reduced-formcoefficients. Section 6 studies tests of overi-
dentifying restrictions. Section 7 concludes. Proofs and derivations
are collected in theAppendix. The supplemental appendix contains
additional derivations.

2. Setup

In this section, I first introduce the model, notation, and the
many instrument asymptotic sequence that allows both the num-
ber of instruments and the number of exogenous regressors to
increase in proportion with the sample size. I then reduce the data
to the low-dimensional statistics T and S, and define theminimum
distance objective function.

2.1. Model and assumptions

There is a sample of individuals i = 1, . . . , n. For each in-
dividual, we observe a scalar outcome yi, a scalar endogenous
regressor xi, ℓn-dimensional vector of exogenous regressors wi,
and kn-dimensional vector of instruments z∗

i . The instruments and
exogenous regressors are treated as non-random.

It will be convenient to define themodel in terms of an orthogo-
nalized version of the original instruments. To describe the orthog-
onalization, let W denote the n × ℓn matrix of regressors with ith
row equal tow′

i , and let Z∗ denote the n×kn matrix of instruments
with ith row equal to z∗

i
′. Let Z̃ = Z∗

− W (W ′W )−1W ′Z∗ denote
the residuals from regressing Z∗ onto W . Then the orthogonalized
instruments Z ∈ Rn×kn are given by Z = Z̃R−1, where the upper-
triangular matrix R ∈ Rkn×kn is the Cholesky factor of Z̃ ′Z̃ . Now, by
construction, the columns of Z are orthogonal to each other as well
as to the columns of W .2

Denote the ith row of Z by z ′

i , and let Y ∈ Rn×2 with rows
(yi, xi) pool all endogenous variables in the model. The reduced
form regression of Y onto Z and W can be written as

Y = Z
(
π1,n π2,n

)
+ W

(
ψ1,n ψ2,n

)
+ V , (1)

where V ∈ Rn×2 with rows v′

i = (v1i, v2i) pools the reduced-form
errors, which are assumed to be mean zero and homoscedastic,

E[vi] = 0, and E[viv
′

i ] = Ω. (2)

The reduced-form coefficients on the instruments are assumed to
satisfy a proportionality restriction, and the parameter of interest,
β , corresponds to the constant of proportionality:

Assumption PR (Proportionality Restriction). π1,n = π2,nβ .

The proportionality restriction implies that

yi = xiβ + w′

iβ
w
n + ϵi, (3)

where ϵi = v1i − v2iβ is known as the structural error, and βwn =

ψ1,n − ψ2,nβ . This equation is known as the structural equation.

2 This orthogonalization is sometimes called a standardizing transformation;
see Phillips (1983) for discussion.
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