
Please cite this article in press as: Armstrong T.B., On the choice of test statistic for conditional moment inequalities. Journal of Econometrics (2018),
https://doi.org/10.1016/j.jeconom.2017.10.007.

Journal of Econometrics ( ) –

Contents lists available at ScienceDirect

Journal of Econometrics

journal homepage: www.elsevier.com/locate/jeconom

On the choice of test statistic for conditional moment inequalities
Timothy B. Armstrong
Yale University, United States

a r t i c l e i n f o

Article history:
Received 15 January 2016
Received in revised form 12 July 2017
Accepted 31 October 2017
Available online xxxx

a b s t r a c t

This paper derives asymptotic approximations to the power of Cramer–von Mises (CvM) style tests for
inference on a finite dimensional parameter defined by conditionalmoment inequalities in the casewhere
the parameter is set identified. Combined with power results for Kolmogorov–Smirnov (KS) tests, these
results can be used to choose the optimal test statistic, weighting function and, for tests based on kernel
estimates, kernel bandwidth. The results show that, in the setting considered here, KS tests are preferred
to CvM tests, and that a truncated variance weighting is preferred to bounded weightings.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

This paper compares methods for inference on a parameter θ
defined by the conditional moment inequalities

E(m(Wi, θ )|Xi) ≥ 0 a.s.

where m : RdW+dθ → RdY is a known function of data Wi and a
parameter θ ∈ Θ ⊆ Rdθ , and ≥ is defined elementwise. Here, Wi
is a RdW valued random variable and Xi is a RdX valued random
variable. We are given independent, identically distributed (iid)
observations {(X ′

i ,W
′

i )
′
}
n
i=1. This defines the identified set

Θ0 ≡ {θ ∈ Θ|E(m(Wi, θ )|Xi) ≥ 0 a.s.}

where Θ ⊆ Rdθ is the parameter space. If Θ0 contains more than
one element, the model is said to be set identified.

Following Imbens and Manski (2004), we are interested in
confidence regions Cn that satisfy the coverage criterion

for all θ0 ∈ Θ0, lim inf
n→∞

P(θ0 ∈ Cn) ≥ 1 − α. (1)

We consider confidence regions constructed by inverting a family
of tests φn(θ ) = φn(θ, {Xi,Wi}

n
i=1), where φn(θ ) is a test of H0,θ :

θ ∈ Θ0:

Cn = {θ |φn(θ ) = 0}.

Subject to the coverage criterion (1), wewould like the confidence
region Cn not to contain points that are far away from the identified
set Θ0. In particular, if we take a parameter θ0 on the boundary
of Θ0 and consider a sequence θn = θ0 + an where an → 0, we
would like to have θn ̸∈ Cn with high probability for an converging
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to zero as quickly as possible (so long as θn approachesΘ0 from the
outside, rather than from the interior). Note that

P(θn ̸∈ Cn) = P(φn(θn) = 1).

Thus, we can determine whether Cn contains points that are far
away from Θ0 by examining the behavior of P(φn(θn) = 1), which
is the power of the test φn(θn) of H0,θn at the alternative P .

This paper provides an asymptotic answer to this question by
examining the asymptotic behavior of P(φn(θn) = 1) as n →

∞. We refer to limit of P(φn(θn) = 1) as the local asymptotic
power of the sequence of tests φn(θn) (note that this terminology
differs from definitions often used in the literature, since the null
hypothesis varies with n while the alternative stays fixed). The
local asymptotic power of this sequence of tests will depend on the
distribution P , the parameter θ0 on the boundary ofΘ0 towhich the
sequence θn = θ0 + an converges, and the sequence an.

This paper considers Cramer–von Mises (CvM) style test statis-
tics, which integrate or add some function of the negative part
of an objective function. These can be compared with existing
results for Kolmogorov–Smirnov (KS) statistics, which take the
minimumof an objective function. The results show that the power
P(φn(θn) = 1) will be greater asymptotically for KS statistics when
the distribution P satisfies generic smoothness conditions of the
form used in the nonparametric statistics literature. In particular,
the results imply that KS statistics are preferred according to a
‘‘minimax within a smoothness class’’ criterion of the form used to
formulate nonparametric relative efficiency results in papers such
as Stone (1982).

As an example of the types of problems covered by this setup,
consider the interval regression model of Manski and Tamer
(2002). We observe (Xi,W L

i ,W
H
i ) where [W L

i ,W
H
i ] is known to

contain the latent variableW ∗

i , which follows the linear regression
model E(W ∗

i |Xi) = (1, X ′

i )θ . This falls into the setup of this paper
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withWi = (Xi,W L
i ,W

H
i ) andm(Wi, θ ) = (WH

i −(1, X ′

i )θ, (1, X
′

i )θ−

W L
i )

′. The identified set is then given by

Θ0 = {θ |E(W L
i |Xi) ≤ (1, X ′

i )θ ≤ E(WH
i |Xi) a.s.}.

Thus, a parameter θ0 in the identified set corresponds to a regres-
sion line (1, x′)θ0 that is between the conditional means E(W L

i |Xi =

x) and E(WH
i |Xi = x) for all x on the support of Xi. If θ0 is on

the boundary of the identified set, it will be equal to one of these
regression lines for some value of x. For θn = θ0 + an approaching
the boundary of the identified set from the outside, the regression
line (1, x′)θn will be above E(WH

i |Xi = x) or below E(W L
i |Xi = x) for

some values of x, and wewould like the test φn(θn) to detect this so
that θn ̸∈ Cn with high probability. We use primitive conditions to
apply the general results in this paper to this setting, thereby giving
asymptotic approximations to this probability. These conditions
correspond to smoothness conditions used in the nonparametric
statistics literature and conditions on the shape of these condi-
tional means near points where one of them is equal to (1, x′)θ0
(see Section 3.4, Appendix A.5).

The remainder of this paper is organized as follows. Section 1.1
defines the tests considered in this paper. Section 1.2 discusses
related literature. Section 2 gives an intuitive description of the
power results in this paper and how they are derived. Section 3
states formally the conditions used in this paper, and provides
primitive conditions for the interval regression model. Section 4
derives the power results. Section 5 reports the results of a Monte
Carlo study. Section 6 concludes. An appendix contains minimax
power comparisons as well as primitive conditions for the results
in the main text in additional settings. A supplementary appendix
contains proofs and auxiliary results.

1.1. Definition of test statistics

The test statistics considered in this paper are as follows. Given a
setG of nonnegative instruments, the null hypothesisH0,θ : θ ∈ Θ0
implies that E(m(Wi, θ )g(Xi)) ≥ 0 for all g ∈ G. Thus, under
H0,θ : θ ∈ Θ0, the sample analogue

En(m(Wi, θ )g(Xi)) ≡
1
n

n∑
i=1

m(Wi, θ )g(Xi) (2)

should not be too negative for any g ∈ G. The results in this paper
use classes of functions given by kernels with varying bandwidths
and location, given by G = {x ↦→ k((x − x̃)/h)|x̃ ∈ RdX , h ∈ R+}

for some kernel function k. With this choice of G, H0,θ : θ ∈ Θ0
holds if and only if E(m(Wi, θ )g(Xi)) ≥ 0 for all g ∈ G, so that (2)
can be used to form a consistent test (see Andrews and Shi, 2013
for a discussion of this and other choices of G).

Alternatively, one can test H0,θ : θ ∈ Θ0 by estimating
E(m(Wi, θ )|Xi = x) directly using the kernel estimate

ˆ̄mj(θ, x) =

∑n
i=1 m(Wi, θ )k((Xi − x)/h)∑n

i=1 k((Xi − x)/h)
(3)

for some sequence h = hn → 0 and kernel function k. IfH0,θ holds,
(3) should not be too negative for any x.

Thus, a test statistic of the null that θ ∈ Θ0 can be formed by
taking any function that is positive and large in magnitude when
(2) is negative and large in magnitude for some g ∈ G, or when
(3) is negative and large inmagnitude for some x. One possibility is
to use a CvM statistic that integrates the negative part of (2) over
some measure µ on G. This CvM statistic is given by

Tn,p,ω,µ(θ ) =

⎡⎣∫ dY∑
j=1

|Enmj(Wi, θ )g(Xi)ωj(θ, g)|
p
− dµ(g)

⎤⎦1/p

(4)

for some p ≥ 1 and weighting ω, where |t|− = |min{t, 0}|. I refer
to this as an instrument based CvM (IV-CvM) statistic. The CvM
statistic based on the kernel estimate integrates the negative part
of (3) against some weighting ω, and is given by

Tn,p,kern(θ ) =

⎡⎣∫ dY∑
j=1

⏐⏐⏐ ˆ̄mj(θ, x)ωj(θ, x)
⏐⏐⏐p
−

dx

⎤⎦1/p

(5)

for some p ≥ 1. I refer to this as a kernel based CvM (kern-CvM)
statistic.

For the instrument based CvM statistic, the scaling for the
power function will depend on ω. This paper considers both a
bounded weighting which, without loss of generality, can be taken
to be constant (the measure µ can absorb any weighting that does
not change with the sample size)

ωj(θ, g) = 1 all θ, g, j (6)

as well as the truncated variance weighting used for KS statis-
tics by Armstrong (2014b), Armstrong and Chan (2016) and
Chetverikov (2012), which is given by

ωj(θ, g) = (σ̂j(θ, g) ∨ σn)−1 (7)

where

σ̂j(θ, g) = {En[mj(Wi, θ )g(Xi)]2 − [Enmj(Wi, θ )g(Xi)]2}1/2

and σn is a sequence converging to zero and a ∨ b denotes the
maximum of a and b for scalars a and b.

The results for CvM statistics derived in this paper can be
compared to power results for KS statistics derived in Armstrong
(2015) and Armstrong (2014b). A KS statistic based on (2) simply
takes the most negative value of that expression over g ∈ G, and is
given by

Tn,∞,ω(θ ) = max
j

sup
g∈G

|Enmj(Wi, θ )g(Xi)ωj(θ, g)|−. (8)

I refer to this as an instrument based KS (IV-KS) statistic. A KS
statistic based on (3) simply takes the most negative value of that
expression over x, and is given by

Tn,∞,kern(θ ) = max
j

sup
θ

⏐⏐⏐ ˆ̄mj(θ, x)ωj(θ, x)
⏐⏐⏐
−

. (9)

I refer to this as a kernel based KS (kern-KS) statistic. As with CvM
statistics, the scaling for the local power function for the instru-
ment based KS test depends on whether a bounded weighting or a
truncated variance weighting is used.

To complete the definition of these tests, we need to define a
critical value.1 For tests that use instrument based CvM statistics
with bounded weights or inverse variance weights with p < ∞,
the test φn,p,ω,µ(θ ), which rejects when φn,p,ω,µ(θ ) = 1, is defined
as

φn,p,ω,µ(θ ) =

{
1 if

√
nTn,p,ω,µ(θ ) > ĉn,p,ω,µ(θ )

0 otherwise
(10)

for some critical value ĉn,p,ω,µ(θ ). For kernel based CvM statistics,
the test φn,p,kern(θ ), which rejects when φn,p,kern(θ ) = 1, is defined
as

φn,p,kern(θ ) =

{
1 if (nhdX )1/2Tn,p,kern(θ ) > ĉn,p,kern(θ )
0 otherwise.

(11)

While all of the new results in this paper are for CvM statistics,
I refer to analogous results for KS statistics at some points for

1 The results covered in this paper cover any critical value that is of the same
order of magnitude asymptotically as a critical value based on the distribution
where all moments bind. See Section 3.1 for details.
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