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a b s t r a c t

Universal thresholding methods have been developed to estimate the large sparse integrated volatility
matrix of underlying assets based on high-frequency financial data. Since the integrated volatility matrix
oftenhas entrieswith awide range of variability, universal thresholding estimators donot take the varying
entries into consideration and may have unsatisfactory performances. This paper investigates adaptive
thresholding estimation of the large integrated volatility matrix. We first construct an estimator for the
asymptotic variance of the pre-averaging realized volatility estimator and then use the two estimators
to develop an adaptive thresholding estimator of the large volatility matrix. It is shown that the adaptive
thresholding estimator can achieve the optimal rate of convergence over the class of the sparse integrated
volatility matrix when both the number of assets and sample size are allowed to go to infinity, while the
universal thresholding estimator can achieve only the sub-optimal convergence rate. Alsowe discuss how
to harness the adaptive thresholding scheme in the approximate factor model. The simulation study is
conducted to check the finite sample performance of the adaptive thresholding estimators.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

As high-frequency data become available for a wide range of
financial assets, researchers have adopted Itô processes to model
the log prices of the assets in high-frequency finance, and de-
veloped nonparametric methods for estimating their integrated
volatility based on high-frequency data contaminated with micro-
structure noise. For estimating a univariate integrated volatility,
popular approaches include realized volatility (Andersen et al.,
2003; Barndorff-Nielsen and Shephard, 2002), two-time scale re-
alized volatility (Zhang et al., 2005), multi-scale realized volatil-
ity (Zhang, 2006), wavelet realized volatility (Fan and Wang,
2007), pre-averaging realized volatility (Jacod et al., 2009), kernel
realized volatility (Barndorff-Nielsen et al., 2008), and a quasi-
maximum likelihood estimator (Xiu, 2010). Methods for estimat-
ing a multivariate integrated co-volatility consist of multi-scale
realized co-volatility based on previous tick data synchronization
(Zhang, 2011), a quasi-maximum likelihood estimator based on
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generalized sampling time (Aït-Sahalia et al., 2010), realized kernel
volatility estimator based on refresh time scheme (Barndorff-
Nielsen et al., 2011), and pre-averaging realized volatility
(Christensen et al., 2010).

Financial research andpractices often encounter a large number
of assets, and it is well known that the existing multivariate esti-
mationmethods do not workwell for estimating a large integrated
volatilitymatrix, and in fact they can be inconsistentwhenboth the
sample size and the number of assets go to infinity. Regularization
approaches such as universal thresholding have been developed
for estimating large integrated volatility matrices (see Wang and
Zou, 2010; Tao et al., 2013a, b; Kim et al., 2016) under the sparse
condition on the integrated volatility matrix. The universal thresh-
olding procedure requires that entries of the integrated volatility
matrix are homogeneous. However, volatilities of financial assets
usually have entries with a very wide range of variability, which
motivates us to develop adaptive thresholding estimator of large
volatility matrix with varying entries. We adopt the pre-averaging
realized volatility matrix (PRVM) estimator with the generalized
sample time and construct estimators for the asymptotic variances
of the entries of PRVM estimator. With the asymptotic variance
estimator, we select varying thresholds for different entries of the
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volatility matrix and call this thresholding estimator the adaptive
thresholding estimator. We show that the adaptive thresholding
estimator can achieve the optimal convergence rate for the spectral
normunder the sparse condition in the asymptotic framework that
allows volatility to go to infinity as the sample size and the number
of assets go to infinity. Under the same sparse condition, we show
that the universal thresholding estimator has the sub-optimal con-
vergence rate. Furthermore, financial markets often exhibit some
common market factors such as sector and industry classification,
firm size, and price to book ratios. To better accommodate the
sparsity for the factor scenario, several estimation methods for
factor-based high-dimensional Itô processes have been proposed
(Aït-Sahalia and Xiu, 2017; Fan et al., 2016; Kim et al., forthcoming;
Kong, 2017a, forthcoming). We also discuss some approach to
adopt the adaptive thresholding scheme to the factor model.

The remainder of the paper is organized as follows. Section 2
provides the model and the data structure. Section 3 describes the
pre-averaging realized volatility estimator with generalized sam-
pling time and presents the sparse condition and adaptive thresh-
olding estimator. Section 4 establishes their asymptotic behaviors
when both the number of variables and the sample size go to
infinity. Section 5 features a simulation study to illustrate the finite
sample performances of the estimators and applies the adaptive
thresholding procedures to a real data set. Section 6 outlines the
main steps and key ideas of the proofs, with the supplementary
document collecting further detailed technical proofs.

2. The model set-up

Let X(t) = (X1(t), . . . , Xp(t))T be the vector of true log prices of
p assets at time t , and assume that X(t) is an Itô process satisfying,

dX(t) = µ(t)dt + σ(t)TdBt , t ∈ [0, 1], (1)

where µ(t) = (µ1(t), . . . , µp(t))T is a drift vector,
Bt = (B1t , . . . , Bpt )T is a standard p-dimensional Brownianmotion,
and σ(t) is a p-by-p matrix. Define the instantaneous volatility of
X(t) as

Σ(t) =
(
Σij(t)

)
i,j=1,...,p = σ(t)Tσ(t),

and its quadratic variation,

[X,X]t =

∫ t

0
Σ(s)ds =

(∫ t

0
Σij(s)ds

)
i,j=1,...,p

, t ∈ [0, 1].

In high-frequency finance, the true log prices X(t) are observed
with micro-structure noises, and the high-frequency prices of dif-
ferent assets are recorded at mismatched time points, which is
called a non-synchronization problem. In light of these, we assume
that observed high-frequency financial data Yi(ti,l) obey themodel,

Yi(ti,l) = Xi(ti,l) + ϵi(ti,l), i = 1, . . . , p, l = 0, . . . , ni, (2)

where ti,l denotes the lth observation time point for the ith asset,
ϵi(ti,l), i = 1, . . . , p, l = 0, . . . , ni, are independent noises with
mean zero, for each fixed i, ϵi(ti,l), l = 0, . . . , ni, are i.i.d. random
variables with variance ηii, and ϵi(·) and Xi(·) are independent.

The goal of this paper is to adaptively estimate the large volatil-
ity matrix

Γ =
(
Γij
)
i,j=1,...,p = [X,X]1,

and investigate the asymptotic properties of the proposed volatil-
ity matrix estimators in the framework that allows both the num-
ber of assets and the sample size to go to infinity.

3. Large volatility matrix estimation

3.1. Pre-averaging realized volatility matrix

To construct a realized co-volatility matrix for multiple assets
based on non-synchronized and noisy high-frequency financial
data, we first need some scheme to synchronize observation time
points. In this paper, we adopt the generalized sampling time
scheme (Aït-Sahalia et al., 2010)whichmay include other available
time synchronization schemes such as refresh time (Barndorff-
Nielsen et al., 2011) and previous tick (Wang and Zou, 2010; Zhang,
2011).

Definition 1 (Aït-Sahalia et al., 2010). A sequence of time points
τ = {τ0, . . . , τn} is said to be the generalized sampling time for a
collection of p assets, if

(1) 0 = τ0 < τ1 < τ2 · · · < τn = 1;
(2) the time intervals, {∆τj = τj − τj−1, 1 ≤ j ≤ n}, satisfy

supj∆
τ
j

p
→ 0;

(3) there exists at least one observation for each asset between
consecutive τi’s.

For asset i, with the generalized sampling time scheme, we select
an arbitrary observation, Yi(τi,l), between τl−1 and τl, that is, τi,l ∈

(τl−1, τl] ∩ {ti,k, k = 0, 1, . . . , ni}, i = 1, . . . , p.
To deal with the micro-structure noise, we use the pre-

averaging realized volatility estimators (Jacod et al., 2009; Chris-
tensen et al., 2010).

Definition 2 (Jacod et al., 2009; Christensen et al., 2010). For the
generalized sampling time τ in Definition 1, the pre-averaging
realized volatility matrix (PRVM) estimator is given by

Γ̂ =
1
ψK

n−K+1∑
l=1

[
Ȳ(τl)Ȳ(τl)T − ς η̂

]
,

where

Ȳ(τi) =

K−1∑
l=1

g
(

l
K

)
[Y(τi+l) − Y(τi+l−1)] ,

ς =

K−1∑
l=0

[
g
(

l
K

)
− g

(
l + 1
K

)]2
, ψ =

∫ 1

0
g(t)2dt,

η̂ = (̂ηij)i,j=1,...,p = diag(̂η1, . . . , η̂p),

η̂i =
1
2ni

ni∑
l=1

[
Yi(ti,l) − Yi(ti,l−1)

]2
,

with K = ϕkn1/2 for some constants ϕk, and the weight function
g(·) is continuous and piecewise continuously differentiablewith a
piecewise Lipschitz derivative g ′ and g(0) = g(1) = 0, and satisfies∫ 1
0 g2(t)dt > 0.

3.2. Adaptive thresholding estimators

Assume that the integrated volatility matrix Γ belongs to a
sparse class

Fδ(π (p)) =

⎧⎨⎩Γ : Γ ≻ 0, max
1≤i≤p

p∑
j=1

(ΓiiΓjj)(1−δ)/2
⏐⏐Γij
⏐⏐δ

≤ Θπ (p) and E
[
Θ4]

≤ CΘ

⎫⎬⎭ , (3)
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