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a b s t r a c t

General expressions are derived for the spectral degree of cross-polarization (SDCP) of a beam

generated by the superposition of two Gaussian Schell-model (GSM) beams, which illuminated with

the same Gaussian Schell-mode source propagating in non-Kolmogorov turbulent atmosphere by

adopting beam cross-spectral density matrix and Young’s interference theory. In particular, through

numerical examples based on our analytical formal the SDCP of two GSM beams is analyzed. Detailed

analysis demonstrate that the SDCP is closely to the spacing of two beams on source plane as well as

the strength of the atmospheric turbulent, but the fractal constant a has no affect on the SDCP.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The effects on the polarization features of the electromagnetic
field across the output plane of a Young interferometer due to the
correlations existing between the fields emerging from the two
pinholes of the mask have been the subject of several recent
works [1–9]. It has been shown in particular that the elements of
the polarization matrix of the field across the output of the
interferometer may differ from those of the field at the small
apertures as the result of generalized interference law involving
the second-order correlation between the field component at the
pinholes [1,2]. In the theoretical analysis of such situation the
beams are usually idealized by assuming them to be strictly
monochromatic [3–4]. Recently other situations have been con-
sidered both within the formulation of the scalar theory [5] and
the electromagnetic theory and two correlated stochastic electro-
magnetic beams [6–8]. Ding et al. [9] have studied the spectral
partially and spectral switches of diffracted spatially and spec-
trally partially coherent pulsed beams in Young’s interference
experiment.

Recently the spectral degree of cross-polarization of pairs of
points in a stochastic electromagnetic beam has been studied
[10–14]. The spectral degree of cross-polarization of a stochastic
electromagnetic beam like field on propagations through the turbu-
lent atmosphere is analyzed [15]. Because the non-Kolmogorov
turbulence spectrum model is more general than Kolmogorov

spectrum so recently theoretical treatment and analytical solutions
based on non-Kolmogorov turbulence have been proposed to
describe optical wave statistics and beam parameters [16–22].

In the present paper we analyze the SDCP of light in the
receiving pattern formed by the two beams propagating through
the turbulent atmosphere. In Section 2, we give the cross-spectral
density matrix in the turbulence atmosphere. The SDCP on the
interference pattern is derived based on the introduced method of
the cross-spectral density matrix in Section 3. The numerical
calculation and analysis how the distance of two beams, the
structure constant of the atmospheric turbulence and the fractal
constant a affect the SDCP in Section 4. Finally, a brief conclusion
is given in Section 5.

2. Cross-spectral density matrix of GSM beams through
turbulent atmosphere

An opaque screen pierced with two identical, small apertures
located at Q1(h) and Q2(�h) with position vectors h1 and h2

(Fig. 1), respectively, are illuminated with the same Gaussian
Schell-mode source. Each small aperture thus becomes a second-
ary emitter with Gaussian Schell-mode beam labeled by Q1 or Q2.
An observation plane is placed at z distance behind the opaque
screen and parallel to the opaque screen [23]. The spacing
between the small apertures is taken to be much smaller than
the distance between the opaque screen and the observation
plane. At the same time we assume that the angles of incidence
and of diffraction at the small apertures are small.
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The second-order statistical properties of the field at small
apertures may be characterized by the 2�2 electric cross-
spectral density matrix defined by the formula [24]

W
2 ð0Þ

ðr1,r2,oÞ � ½W ð0Þ
ij ðr1,r2,oÞ� ¼ ½/E�i ðr1,oÞEjðr2,oÞS�, i¼ x,y, j¼ x,y

ð1Þ

where Ei and Ej are the Cartesian components of the GSM beam
E(r,o) at a point (r,0) in the opaque screen plane; the asterisk
denotes the complex conjugate and the angular brackets denote
the average taken over a statistical ensemble of realizations of the
electric field. Similarly, the second-order correlation properties of
the GSM beams propagation through turbulent atmosphere and
at point P1(r1) and P2(r2) in the plane of observation may be
represented by the correlation matrix [25]

W
2
ðr1,r2,oÞ ¼ ½Wijðr1,r2,oÞ� ¼ ½/E�i ðr1,oÞEjðr2,oÞS�, i¼ x,y, j¼ x,y

ð2Þ

where the components of the electric field at observation point
P1(r1) and P2(r2) are given by [24]

Eiðra,oÞ ¼ � ik
2pz
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i¼ x,y a¼ 1,2 ð3Þ

where k¼2p/l¼o/c is the wave number associated with the
frequency o, l is the wavelength and c is the speed of light in
vacuum. c(rb,ra,o) is the random part of the complex phase of a
spherical wave propagating through the turbulent atmosphere.

Substituting Eq. (3) in Eq.(2), the spectral correlation matrix of
the electric field at a pair of points P1(r1) and P2(r2) in the
observation plane can be represented by the elements of spectral
correlation matrix W(0)of the electric field at the small apertures
as [26]
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By use of the non-Kolmogorov power spectrum of atmospheric
turbulence, the last term in Eq. (4) can be written as [22]
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here

r0 ¼
p2k2zAðaÞ

6ða�2Þ
C2

n k2�a
m exp

k2
0

k2
m

� �
ð2k2

0�2k2
mþak

2
mÞG 2�

a
2

,
k2

0

k2
m

� �
�2k4�a

0

� �	 ���1=2

,

C2
n is a generalized refractive-index structure parameter with

units m3�a, k0¼2p/L0, L0 is the out scale of turbulence, km¼c(a)/
l0, c(a)¼[G(5�(a/2))A(a)(2/3)p]1/a�5, l0 is the inner scale of
turbulence, AðaÞ ¼ ð1=4p2ÞGða�1Þcosðap=2Þ, and G(x) is the
gamma function.

For a planar GSM source occupying a finite domain S, the
elements of the electric cross-spectral density matrix (1) can be
expressed in the form [27]

W ð0Þ
ij ðr1,r2,oÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sð0Þi ðr1,oÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sð0Þj ðr2,oÞ

q
mð0Þij ðr2�r1,oÞ, i¼ x,y j¼ x,y

ð6Þ

where Sð0Þi ðr,oÞ is the spectral density of the component Ei of
electric field in the source plane [28]

Sð0Þi ðr,oÞ ¼ A2
i ðoÞexpð�r2=2s2

i Þ, i¼ x,y ð7Þ

and mð0Þij ðr2�r1,oÞ denotes the spectral degree of coherence of the
field across the source which is given by the expression

mð0Þij ðr2�r1,oÞ ¼ Bij expð�ðr2�r1Þ
2=2d2

ijÞ, i¼ x,y, j¼ x,y ð8Þ

in which the coefficients Ai, Bij, si and dij are independent of
position but they generally depend on the frequency o. si is the
width of the source beam and dij is the source correlation
coefficient. Moreover, the coefficient Bij satisfy relations
Bij¼1(i¼ j)9Bij9r1(ia j) and Bij ¼ B�ji.

To simplify the subsequent analysis, we will take

sx ¼ sy � s: ð9Þ

The cross-spectral density matrices of a GSM source are given
by expression in the form
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On substituting from Eqs. (5) and (10) into Eq. (4) and using a
tensor method, we obtain the more general integral for the
elements of cross-spectral density matrix in the output plane as
follows
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Fig. 1. Notation illustrated.
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