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a b s t r a c t

The factor analysis of a (n,m) matrix of observations Y is based on the joint spectral decomposition of the
matrix squares YY ′ and Y ′Y for Principal Component Analysis (PCA). For very large matrix dimensions
n and m, this approach has a high level of numerical complexity. The big data feature suggests new
estimation methods with a smaller degree of numerical complexity. The double Instrumental Variable
(IV) approach uses row and column instruments to estimate consistently the factors via an averaging
method. We compare the double IV approach to PCA in terms of numerical complexity and statistical
efficiency. The double IV approach can be used for the analysis of recommender systems and provides a
new collaborative filtering approach.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The big data challenge has two prominent features, that are the
huge number of data items, but also the possibility to study new
economic questions, because of new types of available data. Among
the most interesting characteristics of big data sources developed
in recent years, these data sets provide detailed information on
the interdependencies and interactions between the individual
behavior of economic and social agents.

In this paper we consider the interactions in a homogeneous
population of individuals. These interactions are usually repre-
sented bymatrices, whose generic element of index (i, j) measures
the magnitude of the interaction from individual i to individual j.
For instance, the element can be the number of e-mails sent by i to
j during a given period: in this case, i is the index of the transmitter
and j the index of the receiver.1 Another example concerns the
diffusion of systemic risk in a financial sector. The interconnections
are summarized by the exposure matrices available for each class
of assets [see e.g. Upper and Worms (2004), Gourieroux et al.
(2012)]. The element of the matrix can be the amount of debt

* Correspondence to: Università della Svizzera Italiana, Via Buffi 13, CH-6900
Lugano, Switzerland.

E-mail address: patrick.gagliardini@usi.ch (P. Gagliardini).
1 Typically the financial supervisory authorities have such information for

traders.

(resp. stocks, options) of financial institution i held by institution j:
here, i is the index of the debt issuer, whereas j is the index of the
debt holder. Similar examples are the observations of the traded
volumes between a set of buyers and a set of sellers [Kranton
and Minehart (2011)], the co-citations between researchers in
Economics, the table of import/export to major trading partners
[see e.g. Leng and Tang (2012)], and the degree of assistance
between individuals measured for instance by money transfers.
The indices i and j can have different interpretations, for instance
the consumption of good j by household i during a given period
of time, or the scores attributed by a list of people to a set of
items (movies, books, . . . ) used to build recommender systems
[see e.g. Su and Khoshgoftaar (2009)]. Sometimes, the observed
matrices are symmetric, for instance when they measure the so-
cial distance between individuals with social interactions such
as friendship, acquaintance, collaboration [Wasserman and Faust
(1994), Nowicki and Snijders (2001), Jackson (2008), Iijima and
Kamada (2010), Boucher and Mourifie (2013)].

The interactions are usually modeled by factor analysis and
the factor values are estimated by standard methods such as the
Singular Value Decomposition (SVD), the Principal Component
Analysis (PCA), or other reduction techniques.2 However, these

2 See Traxillo (2003) and Suhr (2009) for a description and comparison of the
software for PCA and Exploratory Factor Analysis available in SAS.

http://dx.doi.org/10.1016/j.jeconom.2017.08.002
0304-4076/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.jeconom.2017.08.002
http://www.elsevier.com/locate/jeconom
http://www.elsevier.com/locate/jeconom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jeconom.2017.08.002&domain=pdf
mailto:patrick.gagliardini@usi.ch
http://dx.doi.org/10.1016/j.jeconom.2017.08.002


P. Gagliardini, C. Gouriéroux / Journal of Econometrics 201 (2017) 176–197 177

estimation techniques require a number of computations much
larger than the number of data (see the discussion in Section 2.7).
Their too large numerical complexity makes them inadequate for
huge dimensional matrices of interactions.

The aim of our paper is to explain why the large number of
data can greatly facilitate the estimation of interaction models.
We consider specifications with unobservable row and column
factors. We estimate the factor values by a methodology inspired
by the classical Instrumental Variable (IV) approach.We show that
this estimation methodology has a smaller degree of numerical
complexity compared to PCA, while it achieves the same statistical
efficiency when instruments are optimally selected. The present
paper may be considered as an introduction of a newmodel for big
data and a newestimationmethod. The application to real data sets
is beyond the scope of this paper and would bring a better balance
between explanatory goals vs predictive goals.

We consider in Section 2 the static interaction model and ex-
plain how it can be easily estimated by applying linear instru-
mental variablesmethods based on asymptotic instruments for the
row and column factors, respectively. In this respect we extend to
matrix-variates the methodology introduced in Granger (1987),
or Forni and Reichlin (1996). Differently from the standard IV
framework, instruments can be constructed by partial averaging
of nonlinear transformations of the interaction data and do not
require exogenous data. We derive the asymptotic properties of
these linear IV approaches used to estimate the factor model.
We show that the approach can also be applied for models with
incomplete data. In this respect, it provides a new method of col-
laborative filtering. Finally, we compare the asymptotic properties
of the double IV approach and of PCA. The approach is extended
in Section 3 to time series of interaction matrices, that is, to triply
indexed observations. In Section 4 we illustrate the double IV esti-
mation technique by a simulation study with single- andmultiple-
factor models. Section 5 concludes. The proofs are gathered in
Appendices.

2. Static factor analysis

2.1. The static interaction model

We consider two populations of individuals indexed by i and j,
with i = 1, . . . , n, and j = 1, . . . ,m, respectively. We denote yi,j
the magnitude of the interaction from i to j.3

When these populations and interactions are homogeneous, the
static model can be written as:

yi,j = α′

iβj + εi,j, i = 1, . . . , n, j = 1, . . . ,m, (2.1)

where αi and βj are K -dimensional stochastic row and column
factors and εi,j is a scalar error term. Factor values and error terms
are unobservable. The homogeneity assumption is:

Assumption A.1 (Homogeneity). Random variables αi, βj, εi,j are
independent. The α′

is (resp. the β ′

j s, the ε′

i,js) are identically dis-
tributed with finite second-order moments.

Under Assumption A.1, the factor model treats in a symmetric way
the stochastic factors associated with individual i and individual j.
The independence assumptions are conditional on the knowledge
of the number of factors K . Typically, selecting a too small number
of factors can induce spurious dependences. In the rest of the
theoretical analysis of the paper, we assume that K is the correct
number of factors.

3 Alternatively, we have one population of individuals i and a set of items j.
Then, yi,j denotes either the consumption of item j by individual i, or the opinion
of individual i on item j.

For expository purpose, we start by assuming that the fac-
tors and errors have zero mean. The extension of the estimation
methodology to accommodate non-zero expectations is postponed
to Section 2.3.

Assumption A.2 (Zero-Mean). The variables αi, βj and εi,j have
zero-mean.

Factor model (2.1) can be written in matrix notation as:

Y = αβ ′
+ ε, (2.2)

where Y = (yi,j) is the (n,m) matrix of observations, α (resp. β) the
(n, K ) [resp. (m, K )] matrix of factor values, and ε the (n,m) matrix
of error terms. For a givenmatrix such as Y , we denote yi the (m, 1)
vector yi = (yi,j, j = 1, . . . ,m), that is the transposed of row i of
matrix Y , and by yj its jth n-dimensional column vector.

Under Assumption A.1 (resp. Assumptions A.1–A.2), the factors
αi and βj are identifiable up to an invertible linear transformation.
In otherwords, we identify the vector spaces spanned by the latent
factors, but not the factor values themselves.

Model (2.1) reduces the dimensionality of the distributional
problem. Indeed, the nm-dimensional distribution of matrix-
variate Y is characterized by the two K -dimensional distributions
of the α′s and β ′s plus the one-dimensional distribution of the
ε′s. Model (2.1) introduces pairwise dependence between the el-
ements of matrix Y through rows and columns. This dependence is
not visible when we only consider second-order moments (when
they exist), since:

Cov(yi,j, yk,l) = Cov(α′

iβj, α
′

kβl)
= Cov{E(α′

iβj|β), E(α′

kβl|β)} + E{Cov(α′

iβj, α
′

kβl|β)}
= 0, if i ̸= k,

from Assumptions A.1–A.2. By symmetry we deduce that all pairs
of elements of matrix Y are marginally uncorrelated. However, the
observations associatedwith two different dyads are not necessar-
ily independent as for instance they are in the model introduced
in Holland and Leinhardt (1981) for binary relations.

In fact, model (2.1) satisfies the transitivity condition, which is
often mentioned as an important feature of social networks.4 In-
deed, themagnitude of the link between dyads is larger if they have
an actor in common. This is a form of spatial Markov dependence
[see e.g. Frank and Strauss (1986)]. More precisely, let us consider
the case K = 1 for expository purpose. If i ̸= k and j ̸= l, the
two variables yi,j and yk,l are independent. Let us now consider two
dyads with a common actor, that are (i, j) and (k, j) with i ̸= k, say.
We have:

P[yi,j ∈ A, yk,j ∈ B]
= E{P[αiβj + εi,j ∈ A|βj]P[αkβj + εk,j ∈ B|βj]}

(by the independence of yi,j and yk,j conditional on βj)
̸= E{P[αiβj + εi,j ∈ A|βj]}E{P[αkβj + εk,j ∈ B|βj]}

= P[yi,j ∈ A]P[yk,j ∈ B],

for Borel sets A and B. The two dyads are not independent, and the
dependence can be either positive, or negative. Therefore, model
(2.1) is very different from the matrix-variate normal models with
a constrained variance–covariance matrix for the elements of Y
[see e.g. Dawid (1981), Gupta and Nagar (2000), or Leng and Tang
(2012)].

The condition of independence between row and column fac-
tors αi and βj in Assumption A.1 is not essential for our estimation
approach. It could be relaxed at the cost of some complications in
the asymptotic distribution of the double IV estimator.

4 The two other important features of a social network are homophily on unob-
served attributes and clustering [see the discussion in Handcock et al. (2007)]. The
homophily on unobserved attributes is introduced in Appendix B, and clustering is
discussed in Section 2.5.2.
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